Biomechanical Factors to Consider for Optimum Helmet Efficiency

> Jocelyn Pedder RONA Kinetics North Vancouver, B.C.

Journées annuelles de santé publique

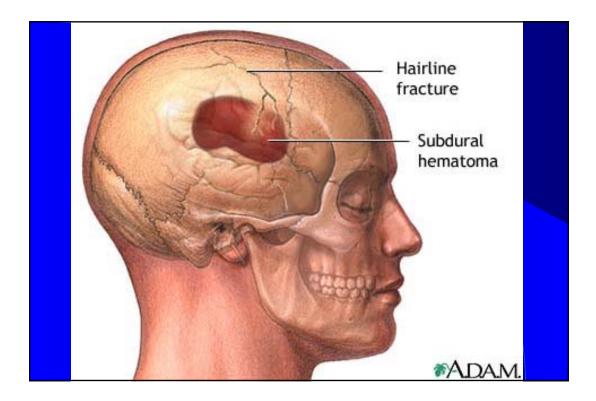
What is biomechanics?

...the science that examines the internal and external forces acting on a human body and the effects produced by these forces...

James Hay, 1973

Cette présentation a été effectuée le 4 décembre 2003, au cours de la journée « La prévention des traumatismes dans les loisirs et les sports, ça fait partie du jeu » dans le cadre des Journées annuelles de santé publique (JASP) 2003. L'ensemble des présentations est disponible sur le site Web des JASP, à l'adresse http://www.inspq.qc.ca/jasp/archives/.

Impact biomechanics


- Study of mechanisms by which injuries occur
- Human response to impact loading
- Human tolerance to injury

Biomechanics of head injury

In recreation - mostly caused during dynamic loading - an impact to the head that results in acceleration of the head as well as local effects

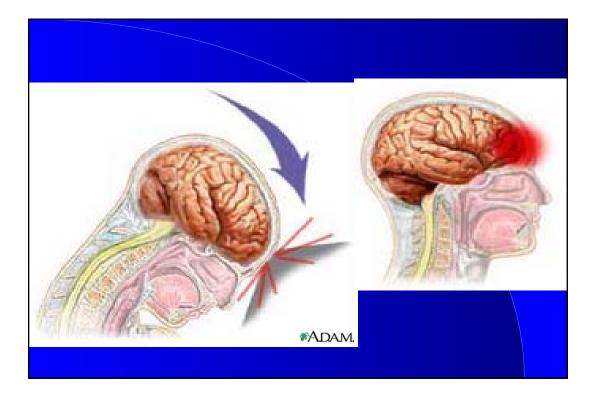
A head impact

- Can cause the underlying skull to deform and fracture
- Skull fractures remote from the impact site can also occur
- Can result in brain injury

Brain injury

- Can occur even if the skull does not bend or fracture
- Brain injury occurs if it is distorted, stretched or compressed, or torn away from the interior of the skull

Contact injuries


Skull deformation injuries

- Local: Skull fracture (linear, depressed) Extradural hematoma Coup contusions
- Remote: Vault and basilar fractures

Shock wave injuries

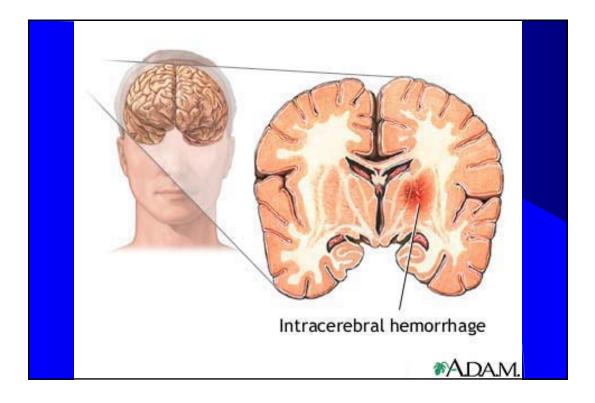
Contrecoup contusion

Intracerebral hematoma

Acceleration injuries

Surface strains

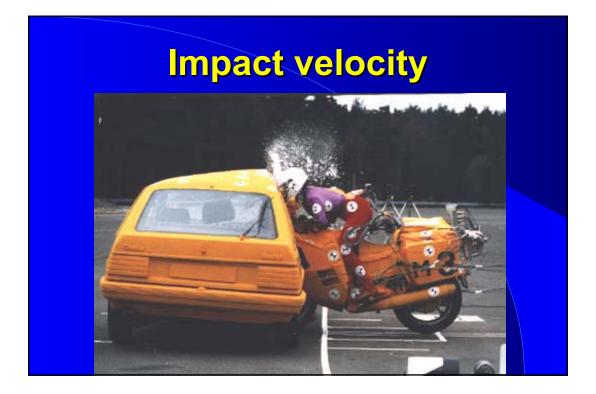
Subdural hematoma

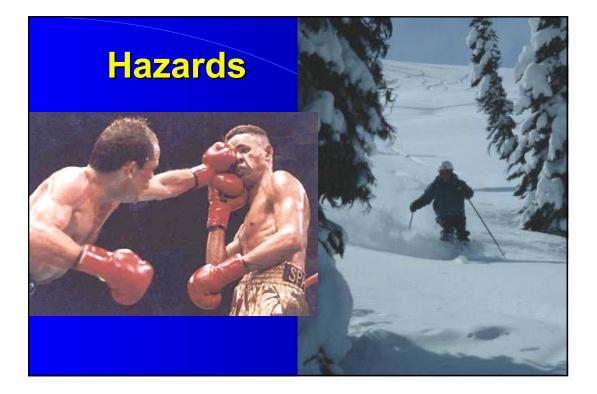

Contrecoup contusion

Intermediate coup contusion

Deep strains

Concussion syndromes


Diffuse axonal injury



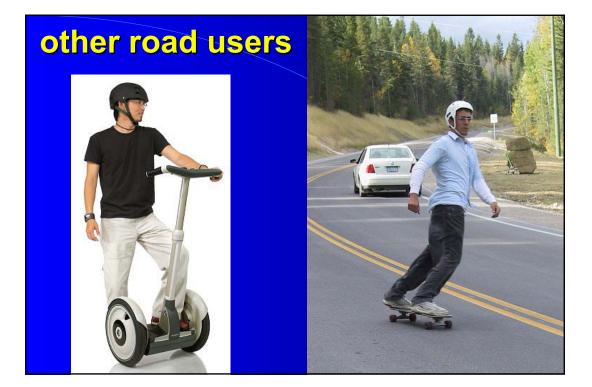
Factors affecting head injury

Impact velocity

- Mass, shape and surface hardness of impacting object
- Physiological variations

<section-header>

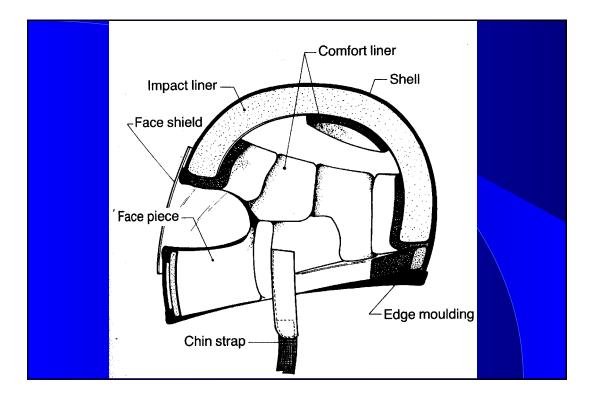
And helmet use!


What is a helmet?


A piece of protective or defensive armour for the head worn by soldiers, policeman, fireman, divers, etc.. *Collins Dictionary*

...by road users

Helmet function


- Protect the head during an impact or blow to the head
- Reduce risk and severity of head injuries
- Protect in range of tolerable impact conditions
- Not interfere with safe performance

Do helmets work?

- Yes!
- Motorcycle helmets reduce risk of severe head injury by one third
- Bicycle helmets decrease risk of head and brain injury by 70-88%
- In all activities helmets reduce risk of head injuries

- Cushions the blow to the head
- Spreads the impact over a larger area
- Reduces the force of the impact on the head
- Reduces its acceleration and skull bending

Helmet Standards

- A means to ensure helmets provide a reasonable level of impact protection.
- Specify minimum performance requirements

Labelling Requirements

- Permanent
- Name of manufacturer
- Date of manufacture
- Standard designation
- Helmet size and warnings

Physical Requirements

- Durable materials
- Smooth shell surface
- No projections
- Peripheral vision

Impact requirements

- Test line
- Pre-conditioning
- Test anvils (steel)
 - flat, hemi, curb, edge
- Impact energy
 - 58 110 Joules

Impact tests

- Guided free fall onto steel anvil
- Drop height varies
- Equivalent to ~18-28 km/h

Pass criteria

- Peak acceleration measured in headform on impact
- Maximum allowable peak linear acceleration 150-300 g
- Based on historic brain injury tolerance review

Retention strength

- dynamic
- "Roll-off"
 - positional stability

Canadian standards

CAN/CSA-D113.2-M89
Cycling helmets

 CAN/CSA Z262.1-M90 Ice hockey helmets

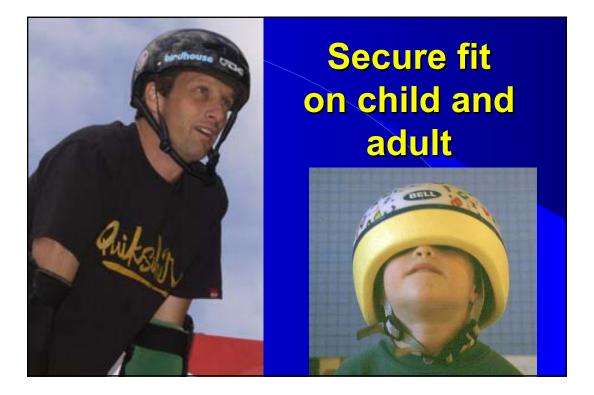
X CAN3-D230-M85 -withdrawn Motorcycle helmets

Other helmet standards

- NHTSA FMVSS 218 ("DOT")
- CPSC Consumer Product Safety Commission
- ASTM American Society for Testing and Materials

Snell Memorial Foundation

ASTM helmet standards


- Football
- Horse sports and horseback riding
- Recreational bicycling or roller skating
- Skateboard & trick roller skating
- Short track ice skating
- Downhill mountain bicycle racing
- BMX cycling
- Recreational snow sport

Other standards – Snell

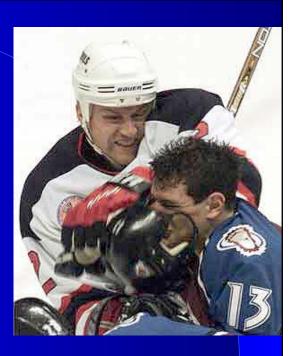
- E2001 horseback riding
- H2000 harness racing
- K-98 karting
- L-98 mopeds and low powered vehicles
- N-94 non-motorized activities
- RS-98 recreational skiing/snowboarding
- S-98 skiing
- SA 2000 competitive automotive sports

Other factors important to optimise helmet effectiveness

Good coverage

Control at point of sale

- More than just comfort padding
- Energy absorbing liner
- Certification labels


Costs

 In 1997, Health Canada estimated that "unintentional" injury costs
\$8.7 billion per year

 Average costs for unhelmeted riders were nearly twice those of helmeted riders.

Ice hockey

- >520,000 players CHA registered
- 1999 study 18% of sports related injuries occurred while playing hockey and 1 in 5 were head injuries

Snowboarding

- Forearms, wrists and hands most often injured (60%)
- 7% head injuries but more severe than other injuries

Downhill skiing

- 657,000 Canadians downhill ski
- Skiing injuries rank 8th in emergency room visits (sports and recreational activities)
- Head/neck 8%

CHIRPP study

1179 records for horseback injuries in 1996 data base

- Almost half 10 -14 years
- 77% were females
- 2.4% using helmet or hard hat

Incidence of non-reporting?

