

MBT HT Filamentous Fungi IVD Module Manuel d'utilisateur

MBT Compass HT IVD

© Bruker Daltonics GmbH & Co. KG

Langue: fr

Avis légaux et réglementaires

Lisez ce manuel avant d'utiliser le logiciel MBT HT Filamentous Fungi IVD Module. Suivez ces instructions lorsque vous utilisez le logiciel.

Copyright © 2023

Bruker Daltonics GmbH & Co. KG

Toutes les autres marques enregistrées sont la propriété exclusive de leurs propriétaires respectifs.

Tous droits réservés

Toute reproduction, adaptation ou traduction est interdite sans autorisation préalable, sauf mention expresse contraire des lois relatives aux droits d'auteur.

Garantie

Bruker Daltonics GmbH & Co. KG n'offre aucune garantie de quelque nature que ce soit en ce qui concerne la performance de cet instrument/matériel, lorsqu'il n'est pas utilisé conformément à ce manuel d'utilisateur et/ou s'il est utilisé à des fins autres que l'utilisation prévue.

Bruker Daltonics GmbH & Co. KG n'assume aucune responsabilité quant à l'utilisation ou la fiabilité de son logiciel avec un instrument/matériel et appareil autre que celui fourni par Bruker Daltonics GmbH & Co. KG.

Utilisation des marques commerciales

Les noms des sociétés et produits actuels mentionnés dans ce manuel peuvent être des marques commerciales de leurs propriétaires respectifs.

Avis de non-responsabilité concernant les liens hypertextes

Bruker Daltonics GmbH & Co. KG n'accorde pas d'autre garantie explicite, verbale ou écrite, et n'est pas responsable des informations ou du contenu découlant des liens Internet présents dans ce document.

Avis

Si un incident grave s'est produit en rapport avec le dispositif, il doit être signalé au fabricant et à l'autorité compétente de la région de l'utilisateur. Veuillez contacter Bruker à l'adresse Complaints.BDAL@bruker.com.

Bruker Fabricant

Fabricant

Bruker Daltonics GmbH & Co. KG

Fahrenheitstraße 4

28359 Bremen

Allemagne

Assistance Informations relatives à la vente

E-mail: biotyper.support@bruker.com E-mail: ms.sales.bdal@bruker.com

Téléphone: +49 421 2205-1401 Téléphone: +49 421 2205-0

Fax: +49 421 2205-106 Site Web: www.bruker.com/microbiology

Entretien:

E-mail: service.bdal.de@bruker.com

Téléphone : +49 421 2205-350 Fax : +49 421 2205-103 Site Web : www.bruker.com Historique du document Bruker

Historique du document

	MBT HT Filamentous Fungi IVD Module Manuel d'utilisateur
Révision :	Révision C (Mars 2023)
Première révision :	Mai 2022

Le tableau suivant décrit les changements importants par rapport à la version précédente du présent document.

Version	Section	Modification
С	Annexe C	Mise à jour : ajout d'indications de référence dans la version MBT Filamentous Fungi IVD Library de 2023 (tableau C-4).

Table des matières

Avis lég	gaux et réglementaires	2
Fabrica	ınt	3
Historic	que du document	4
1 Usage	e prévu	7
2 Préca	utions et avertissements	8
2.1	Consignes de sécurité	8
2.2	Précautions générales et avertissements	8
2.3	Sécurité des données et cybersécurité	9
3 Descr	ription du produit	10
3.1	Principe du test	10
3.2	Caractéristiques de performance	11
3.3	Limites	11
3.4	Matériel fourni	13
3.5	Matériel obligatoire	14
4 Instal	lation du module MBT HT Filamentous Fungi IVD Module	15
5 Utilisa	ation du MBT HT Filamentous Fungi IVD Module	17
6 Évalu	ation des résultats des échantillons de champignons filamenteux	18
	lution des problèmes rencontrés lors des séquences d'identification Filamentous Fungi IVD Module	
8 Symb	poles	21
9 Gloss	saire	22
Annexe	e A — Avertissements et précautions	25
A.1	Avertissements et mises en garde	25
A.2	Précautions	26
	B — Procédure opératoire normalisée pour la culture des cham teux et la préparation de l'échantillon	. •
B.1	Produits chimiques et équipement requis	
B.2	Milieux de culture validés	
B.3	Instruments et accessoires requis	
B.4	Procédure d'identification des champignons filamenteux	
	3.4.1 Préparation des échantillons MyT	
	2.1.1 Troparation and contamination my r	20

	B.4.2	2.2 Procédure d'extraction de la plaque de gélose			
	B.4.3	Procédure d'extraction des champignons filamenteux MBT pour les échantillons en milieu liquide	3 22		
Anne	xe C -	MBT Filamentous Fungi IVD Library			
C.	1 D	escription	38		
C.:	,	rocédure recommandée pour la culture des champignons filamenteux et réparation des échantillons			
C.	3 E	spèces contenues dans la MBT Filamentous Fungi IVD Library	39		
C.	4 G	roupes	43		
C.	5 In	ndications de référence	44		
laday			E A		

Bruker 1 Usage prévu

1 Usage prévu

Le logiciel MBT HT Filamentous Fungi IVD Module est un logiciel de diagnostic *in vitro* destiné à une utilisation avec le logiciel MBT Compass HT IVD et un spectromètre de masse Bruker MALDI-TOF pour le calcul qualitatif automatique de la similitude entre un profil obtenu par spectrométrie de masse d'espèces de champignons filamenteux inconnus provenant d'une sous-culture à partir d'échantillons biologiques humains et les profils obtenus par spectrométrie de masse d'espèces caractérisées, stockées dans une bibliothèque de référence. Le MBT HT Filamentous Fungi IVD Module est un outil d'aide au diagnostic destiné uniquement à une utilisation professionnelle.

Le MBT HT Filamentous Fungi IVD Module doit être utilisé uniquement conformément à son usage prévu

2 Précautions et avertissements

Ce manuel fournit des instructions d'utilisation concernant le module MBT HT Filamentous Fungi IVD Module pour identifier les champignons filamenteux.

Dans ce manuel, effectuer la procédure d'identification Filamentous Fungi IVD utilisant MBT HT Filamentous Fungi IVD Module avec la MBT Filamentous Fungi IVD Library est désigné comme étant le flux de travail MBT Filamentous Fungi IVD.

Tous les utilisateurs doivent lire ce manuel avant d'utiliser le MBT HT Filamentous Fungi IVD Module. N'essayez pas de faire fonctionner le MBT HT Filamentous Fungi IVD Module avant d'avoir parfaitement compris toutes les instructions et les procédures de ce manuel. Si ces instructions ne sont pas respectées, la performance et la fiabilité des flux de travail MBT Filamentous Fungi IVD correspondants risquent d'être compromises.

ATTENTION N'utilisez pas le MALDI Biotyper avant qu'il n'ait été installé par un technicien d'entretien Bruker et que le personnel de laboratoire n'ait été formé par un représentant Bruker.

2.1 Consignes de sécurité

Ce document utilise les consignes de sécurité suivantes :

Remarque Comprend des informations supplémentaires sur l'utilisation du logiciel.

2.2 Précautions générales et avertissements

Utilisez le logiciel uniquement tel que spécifié par Bruker et tel que décrit dans ce manuel d'utilisateur. Si l'opérateur ne suit pas les instructions données dans ce manuel d'utilisateur, ou si l'opérateur utilise le logiciel à d'autres fins que celles prévues, Bruker décline toute responsabilité relative à des résultats erronés.

2.3 Sécurité des données et cybersécurité

Cybersécurité

Le système de données MALDI Biotyper est livré avec un Windows Update activé conçu pour installer automatiquement les mises à jour de (cyber)sécurité. Ce paramètre ne doit pas être modifié, en particulier si le système de données doit être connecté à Internet.

Le système de données MALDI Biotyper est livré avec un logiciel antivirus Windows activé par défaut. Avant de connecter le système de données MALDI Biotyper à un réseau, nous vous recommandons vivement de contacter vos spécialistes informatiques locaux pour connaître leur logiciel antivirus préféré et, si nécessaire, de l'installer et de vous assurer qu'il est maintenu à jour. Le client est tenu de garantir la protection efficace de son système contre les cyberattaques.

Nous vous conseillons vivement de séparer le sous-réseau contenant le système de données MALDI Biotyper (y compris ses clients, le cas échéant) du reste de votre réseau par un pare-feu qui n'autorise que le trafic entrant que vous souhaitez et dont vous avez besoin. Le système de données MALDI Biotyper lui-même ne doit pas être accessible depuis l'extérieur de son sous-réseau. Contactez vos spécialistes informatiques locaux pour une planification plus poussée de la structure de votre réseau.

Assurez-vous que tous les utilisateurs locaux de Windows sur le système de données MALDI Biotyper qui ont été créés par Bruker sont supprimés ou que le mot de passe est modifié conformément à la politique de mot de passe de votre service informatique.

Configuration de l'antivirus

Contactez l'assistance MALDI Biotyper pour obtenir la liste actualisée des ressources du MBT HT Filamentous Fungi IVD Module à exclure de l'antivirus.

Formation à l'application

Une formation dédiée à l'application sera fournie par un spécialiste applications qualifié et doit être effectuée avant toute utilisation initiale.

Contactez votre représentant commercial local Bruker pour obtenir plus d'informations.

3 Description du produit

3.1 Principe du test

MBT HT Filamentous Fungi IVD Module intègre la procédure d'identification des champignons filamenteux dans le logiciel MBT Compass HT IVD.

La procédure d'identification des champignons filamenteux offre plusieurs options pour l'identification par MALDI en fonction du comportement de croissance du champignon filamenteux. Le MBT HT Filamentous Fungi IVD Module peut être appliqué aux échantillons qui ont été préparés conformément à la procédure opératoire normalisée (SOP) pour la culture et la préparation des échantillons de champignons filamenteux, qui décrit le Mycelium Transfer, la procédure d'extraction à partir d'un milieu solide ou la procédure d'extraction à partir d'un milieu liquide, voir Annexe B. MBT HT Filamentous Fungi Module tient compte de l'acquisition de spectre de masse avec des paramètres de pondération différents de ceux appliqués pour la plupart des bactéries.

3.2 Caractéristiques de performance

Partie d'étude	МуТ	Extraction de la plaque d'agar	Extraction à partir d'une culture liquide	Total dans un flux de travail complet
Validation du flux de travail				
Taux d'identification log(score)				
≥ 1,6 dans le panel de flux de travail	94 %	94 %	100 %	100 %
Taux d'identification log(score)				
≥ 1,8 dans le panel de flux de	83 %	85 %	100 %	100 %
travail				
Étude clinique prospective et rétre	ospective, no	mbre d'identif	ications (taux d'ide	entification en %)
Site N	49 (98 %)		1 (2 %)	100 %
Site N		37 (74 %)	10 (20 %)	94 %
Site O	81 (81 %)		9 (9 %)	90 %
Site O		23 (43 %)	14 (26 %)	70 %
Total				89 %
Spécificité			chaque entrée de l le la bibliothèque e	·
Sensibilité (limite de détection)	Les échantillons fongiques préparés avec l'MyT, la quantité de champignons testés de 1 à 2 mm, 3 à 4 mm et 6 à 8 mm n'ont révélé aucune différence significative dans les log(scores) (α = 0,05). La quantité recommandée de 1 à 4 mm est appropriée car la plage de mesure testée n'est pas en conflit avec la limite de détection supérieure ou inférieure. Pour la plage de mesure pour les méthodes d'extraction ont été testés en diluant l'extrait dans une série de dilutions. Une dilution de 1 à 4 n'a pas fait baisser les log(scores) alors qu'une dilution de 1 à 10 et moins a clairement réduit la performance à une valeur inférieure à la limite de détection.			

3.3 Limites

Certaines espèces de champignons filamenteux ont des spectres de masse très similaires, elles ont par conséquent été regroupées dans un groupe MALDI, voir la section Annexe C.

Certaines espèces de champignons filamenteux ont des spectres de masse similaires. Une indication de référence est attribuée à ces espèces (pour en savoir plus, voir la section Annexe C). Dans ce cas, la fiabilité de l'identification de l'espèce doit être évaluée pour chaque résultat par un spécialiste.

L'identification des sous-espèces ne fait pas partie de l'utilisation prévue. L'analyse des échantillons cliniques, par exemple l'analyse d'ongles sans étape de culture, ne fait pas partie de l'utilisation prévue, l'étape de culture étant requise.

Remarque Seul MBT Biotarget 96 IVD peut être utilisé. Les cibles en acier ne sont pas validées pour ce flux de travail.

L'un des milieux validés doit être utilisé à des fins de culture. Les échantillons cliniques peuvent donner lieu à des cultures multi-espèces. Ces échantillons d'espèces multiples ne font pas partie de l'utilisation prévue. Une culture pure doit être obtenue pour être analysée.

Des espèces inconnues de champignons filamenteux ou des espèces de champignons filamenteux n'ayant été que récemment décrites peuvent être cultivées mais ne seront pas identifiées en utilisant le flux de travail MBT Filamentous Fungi IVD. Seules les espèces contenues dans la MBT Filamentous Fungi IVD Library actuelle peuvent être identifiées.

Les résultats finaux d'identification doivent être évalués par un professionnel qualifié ayant de l'expérience dans le domaine de la microbiologie clinique.

L'analyse de 779 MSP par rapport au contenu complet de la bibliothèque a permis d'identifier 772 MSP sans ambiguïté ou couvertes par des indications de référence. Les 7 autres MSP ont montré une interférence mineure avec les autres MSP.

1. Aspergillus westerdijkiae	>	Aspergillus ochraceus
2. Aspergillus montevidensis	>	Aspergillus ruber
3. Aspergillus ruber	>	Aspergillus montevidensis
4. Fusarium cerealis_ culmorum_ group	>	Fusarium graminearum
5. Monilinia laxa	>	Botrytis cinerea
6. Nannizzia gypsea	>	Trichophyton mentagrophytes_group
7. Trichophyton rubrum_group	>	Trichophyton mentagrophytes_group

Cela a conduit à une spécificité analytique de 96,6 %. Ceci a été considéré comme approprié car une utilisation excessive d'indications de référence entre de grandes unités taxonomiques conduirait à une résolution taxonomique floue.

3.4 Matériel fourni

L'emballage standard de MBT HT Filamentous Fungi IVD Module contient les composants suivants :

- MBT HT Filamentous Fungi IVD Module
- · Manuel d'utilisateur
- Licence pour MBT HT Filamentous Fungi IVD Module transmise par e-mail

Des modules logiciels supplémentaires sont disponibles pour étendre la plage d'applications de MALDI Biotyper.

Pour plus d'informations sur les modules logiciels, reportez-vous à la documentation des modules respectifs ou visitez le site www.bruker.com/mbt.

3.5 Matériel obligatoire

Le matériel, les consommables et les réactifs suivants sont obligatoires pour utiliser le produit comme prévu et peuvent être commandés séparément :

Produit	Référence
IVD Matrix HCCA-portioned	8290200
IVD Bacterial Test Standard	8290190

En fonction de votre flux de travail, les plaques cibles MALDI suivantes sont compatibles :

Produit	Référence
MBT Biotarget 96 IVD	1839298
MSP Biotarget Adapter	8267615

Remarque Aucune cible en acier ne peut être utilisée.

4 Installation du module MBT HT Filamentous Fungi IVD Module

L'installation du MBT Compass HT IVD est une condition requise préalable à l'installation du MBT HT Filamentous Fungi IVD Module.

Pour installer MBT HT Filamentous Fungi IVD Module, démarrez MBT Compass HT IVD, connectez-vous en tant qu'utilisateur ayant le rôle de responsable de laboratoire, allez dans Afficher plus > Configuration > Modules > Local et cliquez sur Rechercher les modules.

Accédez au dossier MBT-Compass-HT-IVD-Modules sur le support d'installation et sélectionnez MBT HT Filamentous Fungi IVD Module. Cliquez ensuite sur **Installer** et attendez que toutes les parties du module soient installées. La vue passe automatiquement à la vue Installé lorsque l'installation est terminée, voir figure 4-1.

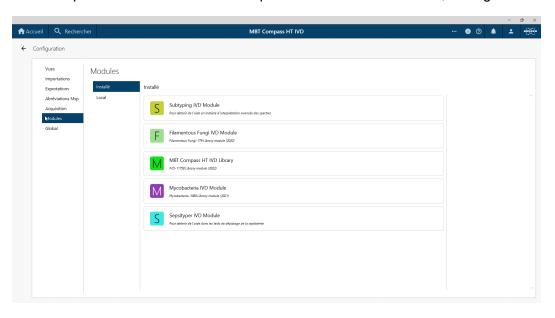


Figure 4-1 Aperçu des modules installés

Remarque Tous les produits IVD ne sont pas des marques déposées dans tous les pays. Contacter votre représentant local pour connaître les disponibilités dans votre pays.

Après avoir installé le(s) module(s), redémarrez le client pour assurer une initialisation et une licence correctes du module. Ensuite, allez dans **Afficher à propos de** et vérifiez si le nouveau module est affiché et marqué comme étant sous licence avec une coche derrière son nom.

Si MBT HT Filamentous Fungi IVD Module est installé, le type d'échantillon **Champignons filamenteux** est disponible dans MBT Compass HT IVD.

5 Utilisation du MBT HT Filamentous Fungi IVD Module

L'installation de MBT HT Filamentous Fungi IVD Module ajoute le type d'échantillon **Champignons filamenteux** à la liste des types d'échantillons MBT Compass HT IVD disponibles, voir figure 5-1.

L'acquisition de données issues d'échantillons définis comme étant des **Champignons filamenteux** est différente de celle utilisée pour les échantillons **BTS** et **Standard**. La méthode d'acquisition est optimisée pour les champignons filamenteux. Les spectres de masse obtenus sont automatiquement comparés à la MBT Filamentous Fungi IVD Library.

Les échantillons **Champignons filamenteux**, **Standard** ou **BTS** peuvent néanmoins être mesurés sur la même plaque cible MALDI et aucune intervention de l'utilisateur n'est requise durant la mesure ou le traitement.

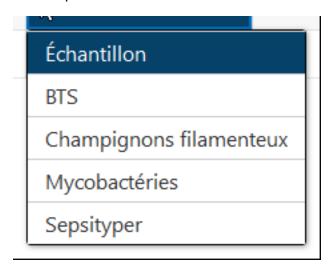


Figure 5-1 Type d'échantillon Champignons filamenteux ajouté à la liste déroulante des types d'échantillons disponibles

6 Évaluation des résultats des échantillons de champignons filamenteux

Les résultats des échantillons de **Champignons filamenteux** sont codifiés par des couleurs et utilisent une palette vert/jaune/rouge similaire à celle utilisée pour les échantillons **Standard** et **BTS**, voir figure 6-1. Un aperçu des résultats du MALDI Biotyper indique le type d'échantillon dans la colonne **ID de l'échantillon**.

	Tableau d'aperçu des résultats début					
Identifiant de l'échantillon	Pos. cible	Organisme (meilleure correspondance)	log(score) (Conf.)	Organisme (deuxième meilleure correspondance)	log(score) (Conf.)	Cohérence
A1 (Filamentous Fungi)	<u>A1</u>	Lichtheimia ramosa	2.83 (+++)	Aucune identification d'organisme possible	<u>1.16</u> (-)	<u>(A)</u>
<u>B1</u> (Filamentous Fungi)	<u>B1</u>	Aspergillus brasiliensis	2.47 (+++)	Aspergillus brasiliensis	2.25 (+++)	<u>(A)</u>
C1 (Filamentous Fungi)	<u>C1</u>	Fusarium dimerum	2.34 (+++)	Fusarium dimerum	<u>1.68</u> <u>(+)</u>	(A)
<u>D1</u> (Filamentous Fungi)	<u>D1</u>	Fusarium dimerum	2.27 (+++)	Fusarium dimerum	<u>1.68</u> <u>(+)</u>	(A)
E1 (Filamentous Fungi)	<u>E1</u>	Fusarium proliferatum	2.27 (+++)	Fusarium oxysporum	2.03 (+++)	<u>(B)</u>
<u>F1</u> (Filamentous Fungi)	<u>F1</u>	Fusarium proliferatum	1.86 (+++)	Fusarium proliferatum	1.75 (+)	(A)
BTS (BTS)	<u>H12</u>	Escherichia coli	2.68 (+++)	Escherichia coli	2.22 (+++)	(A)
	Tableau d'aperçu des résultats fin					

Figure 6-1 Extrait du tableau d'aperçu des résultats montrant les types d'échantillons concernés sous l'ID de l'échantillon

Les trois couleurs indiquent trois niveaux de confiance :

Identification avec un degré de confiance élevé (vert), identification avec un degré de confiance faible (jaune) ou pas d'identification (rouge), voir figure 6-2.

Plage	Interprétation		Couleur
1,80–3,00	Identification avec un degré de confiance élevé		vert
1,60–1,79	Identification avec un degré de confiance faible		jaune
0,00-1,59	Aucune identification d'organisme possible	(-)	rouge

Figure 6-2 Signification des valeurs de score pour les échantillons de champignons filamenteux

Le type d'échantillon **BTS** ne diffère que par le seuil haut de sa plage de masse. Pendant la calibration de l'instrument utilisant IVD BTS, le seuil haut de la plage de masse est augmenté à 18 kDa pour permettre la mesure du pic de calibration de la myoglobine situé autour de 17 kDa. Chaque position BTS est également mesurée en utilisant les paramètres d'échantillon **Standard**, et le score obtenu est utilisé comme indicateur de la performance globale de l'instrument et de la préparation de l'échantillon.

Type d'échantillon	Plage de masse [Da]	Pas d'ID	ID avec degré de confiance faible	ID avec degré de confiance élevé
BTS	3 000–18 000	< 1,7	≥ 1,7 et < 2,0	≥ 2,0
Standard	3 000–15 000	< 1,7	≥ 1,7 et < 2,0	≥ 2,0
Champignons filamenteux	3 000–15 000	< 1,6	≥ 1,6 et < 1,8	≥ 1,8

De plus, les seuils de log(score) pour les identifications avec degrés de confiance faible et élevé des échantillons de **Champignons filamenteux** sont inférieurs à ceux des échantillons **Standard** et **BTS**. Bien que la ou les méthodes de préparation IVD des champignons filamenteux soient optimisées pour les champignons filamenteux, certains échantillons peuvent donner lieu à des spectres de masse de qualité intermédiaire. Ces spectres de masse comprennent suffisamment d'informations pour l'identification de l'espèce, mais les log(score) peuvent être plus faibles. Pour compenser, il suffit de baisser les seuils de log(score).

7 Résolution des problèmes rencontrés lors des séquences d'identification avec le MBT HT Filamentous Fungi IVD Module

Plusieurs scénarios potentiels sont énumérés dans le manuel d'utilisateur de MBT Compass HT IVD.

Si un scénario ou une erreur qui survient n'est pas énuméré(e) dans le manuel cité ou si le message « Erreur ! Veuillez contacter le service d'assistance. » s'affiche, contactez Bruker, voir section Fabricant, page 3.

Bruker 8 Symboles

8 Symboles

Les symboles suivants sont utilisés dans l'étiquetage :

REF	Référence du catalogue	
CE	Marquage CE	
IVD	Dispositif médical de diagnostic <i>in vitro</i>	
	Fabricant	
	Risques biologiques	
	Rayonnement laser	
	Produits chimiques extrêmement inflammables	
T. T.	Produits chimiques corrosifs	
(1)	Produits chimiques dangereux	

9 Glossaire Bruker

9 Glossaire

В

BDAL

Bruker Daltonics

Bibliothèque

Entrées de référence de signatures de masse des protéines d'un micro-organisme dans une structure de type base de données.

BTS

Bacterial Test Standard. Préparation à base de protéines bactériennes utilisée pour la calibration et la validation du système MALDI Biotyper system.

D

Dépôt

Échantillon séché ou gouttelette de liquide appliqué(e) à une plaque cible MALDI.

Ε

Échantillon

Organisme à analyser (à définir, à mesurer et à classifier) lors d'une séquence d'identification du MALDI Biotyper.

Н

Hotte de laboratoire

Dispositif utilisé pour extraire en toute sécurité les émanations chimiques du laboratoire, par exemple à l'aide d'un système d'évacuation ou par absorption à l'aide de filtres à charbon. REMARQUE : ne doit pas être confondue avec un banc à flux laminaire utilisé pour les techniques de culture cellulaire. Ces dispositifs ne font que retirer les particules, ils n'éliminent pas les réactifs.

Bruker 9 Glossaire

I

Identification

Processus de comparaison du modèle du pic d'un spectre inconnu avec l'ensemble (ou un sous-ensemble) des modèles de référence de la base de données MALDI Biotyper. En fonction du score du ou des meilleurs candidats, l'identification est jugée réussie ou non.

IVD HCCA

Matrice utilisée pour les mesures avec MALDI Biotyper.

L

Logiciel MBT Compass HT IVD

Logiciel utilisé pour définir, acquérir et vérifier les séquences d'identification du MALDI Biotyper.

M

MALDI

Acronyme pour Matrix Assisted Laser Desorption Ionization (désorption/ionisation laser assistée par matrice).

Matrice (matrice MALDI)

Réactif qui absorbe la lumière UV et transfère les protons vers d'autres molécules. Essentielle en spectrométrie de masse MALDI-TOF.

MBT

MALDI Biotyper

MBT Biotarget 96 IVD

Portoir d'échantillon utilisé pour les procédures du MALDI Biotyper.

Р

Position BTS

Position sur une plaque cible MALDI où le BTS est détecté, pour la validation et le contrôle qualité de l'instrument.

9 Glossaire Bruker

Position d'échantillon

Position de la plaque cible MALDI et données d'analyte associées. Indiquée par un cercle bleu dans l'affichage de la cible. Position géométrique contenant l'échantillon à analyser. Emplacement de l'échantillon sur une plaque cible MALDI, par ex. A1, B5, etc.

R

Résultats de l'identification

Résultats d'une séquence d'identification, sous forme de tableau.

S

Score

Un paramètre biostatistique qui reflète la fiabilité de la correspondance entre le modèle de l'échantillon et le modèle de référence. Plus le score est élevé, plus le degré de confiance est élevé.

Séquence d'identification

Conteneur pour toutes les données en rapport avec l'identification des échantillons sur une plaque cible MALDI mesurée dans un lot.

Annexe A — Avertissements et précautions

A.1 Avertissements et mises en garde

AVERTISSEMENT — **RISQUES BIOLOGIQUES**: le système MALDI Biotyper utilise un matériel biologique potentiellement dangereux. Tous les échantillons de patients et les cultures doivent être manipulés comme des substances potentiellement infectieuses.

AVERTISSEMENT — RAYONNEMENT LASER: l'instrument IVD MALDI Biotyper System utilise un laser UV. Il s'agit d'un laser dont le rayon est invisible. Pour éviter d'exposer vos yeux à ce rayon laser, ne retirez pas le couvercle de l'instrument. Seuls des techniciens agréés formés par Bruker doivent retirer les couvercles de protection de l'instrument

AVERTISSEMENT — PRODUITS CHIMIQUES EXTRÊMEMENT INFLAMMABLES: certains des produits chimiques utilisés dans les procédures MALDI Biotyper sont hautement inflammables. Lisez la/les fiche(s) de données de sécurité remise(s) par le fournisseur du réactif.

AVERTISSEMENT — **PRODUITS CHIMIQUES CORROSIFS**: certains des produits chimiques utilisés dans les procédures MALDI Biotyper sont corrosifs. Lisez la/les fiche(s) de données de sécurité remise(s) par le fournisseur du réactif.

AVERTISSEMENT — **PRODUITS CHIMIQUES NOCIFS**: certains des produits chimiques utilisés dans les procédures MALDI Biotyper sont nocifs. Lisez la/les fiche(s) de données de sécurité remise(s) par le fournisseur du réactif.

A.2 Précautions

Nous recommandons vivement de prendre les précautions suivantes lors de la préparation de l'échantillon MALDI Biotyper et de la mesure :

- Les instruments Bruker sont conçus pour être utilisés dans des laboratoires ayant un niveau 1 ou 2 de biosécurité.
- Lorsque vous manipulez des échantillons de patients, des cultures microbiennes ou des produits chimiques, portez un équipement de protection individuelle (blouse de laboratoire, lunettes et gants de protection) conformément aux procédures de sécurité du laboratoire. Travaillez sous une hotte de laboratoire si le fournisseur du réactif le recommande.
- Utilisez exclusivement les produits chimiques et les réactifs recommandés et veillez à ne pas contaminer les réactifs.
- Manipulez et éliminez le matériel biologique et les déchets chimiques dans le respect des procédures de sécurité du laboratoire.
- Manipulez et décontaminez ou mettez au rebut tous les accessoires et les consommables conformément aux procédures de sécurité en vigueur dans le laboratoire.
- Ne forcez pas l'ouverture des couvercles de protection du spectromètre de masse et n'utilisez jamais ce dernier si les couvercles de protection ne sont pas en place.
- Évitez d'exposer MBT Biotarget 96 IVD à une atmosphère contenant des désinfectants oxydants. Nous recommandons de conserver Biotarget dans une boîte fermée.

Annexe B — Procédure opératoire normalisée pour la culture des champignons filamenteux et la préparation de l'échantillon

B.1 Produits chimiques et équipement requis

- Eau de qualité HPLC
- Éthanol absolu (EtOH)
- Acétonitrile (ACN)
- Acide formique (AF) 70 %
- Bruker IVD Matrix HCCA-portioned; 8290200 (dénommé « IVD HCCA »)¹
- Solvant standard (Acetonitrile 50 %, water 47.5 % and trifluoroacetic acid 2.5 %), par exemple, 19182 (Sigma-Aldrich), 19182 (Honeywell Riedel-de Haen) ou PRLS89449.230 (VWR Chemicals)
- · MBT Biotarget 96 IVD
- Applicateur d'échantillons (cure-dents pour le MyT, écouvillon pour l'extraction de la plaque de gélose et pour l'inoculation du matériel fongique dans la culture liquide)
- Bruker IVD Bacterial Test Standard; 8290190 (dénommé « IVD BTS »)²
- Embouts de pipette 50–1 000 μL et une pipette adaptée
- Embouts de pipette 2–200 µL et pipette adaptée
- Embouts de pipette 0,5-10 µL et une pipette adaptée
- Pipette Pasteur à usage unique
- Tube de réaction de 1,5 mL, par exemple, Eppendorf 0030 120.086

¹La préparation doit être effectuée comme décrit dans les dernières instructions d'utilisation de IVD Matrix HCCA-portioned.

²La préparation doit être effectuée comme décrit dans les dernières instructions d'utilisation de IVD Bacterial Test Standard.

B.2 Milieux de culture validés

- Milieu gélosé de Sabouraud, IDFP (plaque CONIDIA), gélose à l'extrait de malt
 - Plaque de Sabouraud, par exemple, n°254083 (Becton Dickinson)
 - Plaque ID-Fungi (Conidia, Quincieux, France), n°0110082
 - Plaque de gélose à l'extrait de malt n°11717720 (Th. Geyer)
- Bouillon de Sabouraud, par exemple, 221014 (Becton Dickinson) ou 600894ZA (VWR Chemicals)¹

Remarque N'utilisez que des produits chimiques de la plus haute pureté disponible (adaptés à MALDI ou HPLC).

B.3 Instruments et accessoires requis

- Agitateur rotateur, par exemple agitateur rotateur 360°, PTR-25 Avantor (VWR) N° cat. 444-0932
- Centrifugeuse de paillasse, par exemple, 5404000010 (Eppendorf)
- MBT FAST Shuttle IVD: 1878263
- IVD MALDI Biotyper System (microflex LT/SH); 8605089
- IVD MALDI Biotyper smart System (microflex LT/SH smart); 8605200
- MALDI Biotyper sirius IVD System; 1890112
- MALDI Biotyper-BD sirius IVD System; 1890113
- MALDI Biotyper sirius one IVD System; 1890212
- MALDI Biotyper-BD sirius one IVD System; 1890213
- MBT Compass HT IVD; 1877017
- MBT HT Filamentous Fungi IVD Module; 1877013

¹Conservez les aliquotes dans des tubes munis de bouchons à vis, le bouchon à vis étant fermé hermétiquement.

B.4 Procédure d'identification des champignons filamenteux

La procédure d'identification la plus rapide est la procédure de Mycelium Transfer (MyT), qui doit être exécutée en premier. Si nécessaire, la deuxième option est l'extraction (Ext), qui augmente le taux d'identification en raison d'une meilleure accessibilité des protéines pendant la mesure MALDI. La procédure présentant le taux d'identification le plus élevé est la procédure de culture liquide. L'avantage supplémentaire de cette méthode est de pouvoir identifier les champignons filamenteux qui sont difficiles à mesurer, par exemple, en raison des difficultés de prélèvement. La croissance en milieu liquide est généralement très rapide et produit du matériel biologique dans un état physiologique standardisé. Par conséquent, la mesure est simplifiée et le matériel biologique peut être mesuré de manière fiable. L'application de cette procédure d'identification aboutit à l'identification la plus efficace des champignons filamenteux.

B.4.1 Préparation des échantillons MyT

Les procédures MyT constituent les procédures de base de préparation des échantillons et sont recommandées. Pour préparer un échantillon en utilisant la procédure MyT, procédez comme suit :

1. Sélectionnez une plaque MBT Biotarget 96 IVD avec un nombre approprié d'emplacements libres.

ATTENTION Aucune cible en acier ne peut être utilisée dans ce flux de travail.

- Pipeter 1 μL d'acide formique à 70 % sur une position d'échantillon (dépôt) sur le site MBT Biotarget 96 IVD (Il est recommandé de faire des duplicatas pour chaque échantillon).
- 3. Trempez l'applicateur d'échantillon (par exemple, un cure-dent en bois) dans la goutte de FA sur la plaque MALDI avant de transférer le matériel microbien.
- 4. Utilisez l'applicateur humide pour prélever le « mycélium frontal » de la plaque de gélose et étalez le matériel biologique avec l'acide formique sous forme de film mince sur le dépôt cible.
- 5. Laissez sécher le dépôt préparé à température ambiante.

- Déposez 1 µL de IVD BTS sur un dépôt séparé et laissez sécher les dépôts à l'air libre et à température ambiante.
- 7. Recouvrez chaque dépôt d'échantillon et chaque dépôt de QC BTS avec 1 µL de solution de matrice IVD HCCA. Utilisez un nouvel embout de pipette pour chaque échantillon ou position QC BTS. Vérifiez que l'échantillon est bien placé et qu'aucune gouttelette de matrice ne s'écoule d'une position à une autre.

ATTENTION Après le séchage d'un échantillon, la solution IVD HCCA doit être ajoutée dans un délai de 30 minutes. Au-delà de ce délai de 30 minutes après séchage, les résultats d'identification d'un échantillon recouvert d'une solution IVD HCCA sont à ignorer. La préparation de cet échantillon doit être répétée sur une position cible MALDI inoccupée.

8. Laissez sécher MBT Biotarget 96 IVD recouvert de la matrice à une température élevée (35 ± 0,7 °C) et dans des conditions contrôlées avec MBT FAST Shuttle IVD (1878263). Pour plus de détails, reportez-vous au Manuel d'utilisateur MBT FAST Shuttle IVD.

Remarque Les cibles en acier ne sont pas compatibles avec le MBT FAST Shuttle IVD.

ATTENTION Les plaques cibles MALDI doivent être analysées dans les 24 heures qui suivent la préparation. Si un délai supérieur à 24 heures s'est écoulé depuis la préparation, la procédure de préparation d'échantillons de la plaque cible MALDI devra être renouvelée.

Remarque En alternative au séchage avec MBT FAST Shuttle IVD (1878263), le séchage à température ambiante est également possible.

9. Chargez MBT Biotarget 96 IVD dans le spectromètre de masse MALDI-TOF et effectuez la mesure. En cas d'identification non réussie, répétez la procédure MyT avec plus de matériel fongique.

B.4.2 Procédure d'extraction de la plaque de gélose

La préparation d'un échantillon par extraction à partir d'une plaque de gélose constitue une alternative à la préparation MyT. La procédure est la suivante :

- 1. Versez 300 μL d'eau de qualité HPLC dans un tube de réaction de 1,5 mL (par exemple, Eppendorf n° 0030 120.086).
- 2. À l'aide d'un applicateur d'échantillon (par exemple, un écouvillon en bois), transférez le mycélium frontal de la plaque de gélose d'origine dans l'eau de qualité HPLC et mélangez au vortex pendant au moins 10 secondes.
- 3. Ajoutez 900 µL d'éthanol pur et mélangez au vortex à nouveau.
- 4. Centrifugez le matériel biologique dans une centrifugeuse de paillasse pendant 2 minutes entre 13 000 et 15 000 tr/min.
- 5. Retirez le surnageant avec précaution en le pipetant ; le risque de perdre le culot de champignons filamenteux est élevé.
- 6. Pour éliminer l'éthanol qui pourrait coller au tube, centrifugez à nouveau pendant quelques secondes et éliminez complètement l'éthanol résiduel.
- 7. Laissez le culot sécher à température ambiante jusqu'à ce qu'il soit suffisamment sec. Pour une définition de « suffisamment sec », voir la remarque à la page 35.
- 8. Ajoutez de l'acide formique aqueux à 70 % proportionnellement à la taille du culot et aspirez puis relâchez la solution avec la pipette jusqu'à ce que le culot soit remis en suspension aussi bien que possible. Un très petit culot nécessitera 10 μL à 20 μL et un gros culot pourrait nécessiter jusqu'à 100 μL d'acide formique à 70 %.
- 9. Ajoutez le même volume d'acétonitrile et aspirez puis relâchez la solution avec la pipette jusqu'à ce que le culot soit complètement remis en suspension.
- 10. Centrifugez le tube pendant 2 minutes entre 13 000 et 15 000 tr/min.
- 11. Déposez 1 µL de l'extrait sur une position d'échantillon du MBT Biotarget 96 IVD. Utilisez un nouvel embout de pipette pour chaque nouvel extrait d'échantillon.

- Déposez 1 µL de IVD BTS sur un dépôt distinct sur MBT Biotarget 96 IVD et séchez les dépôts à température élevée (35 ± 0,7 °C) et dans des conditions contrôlées avec le MBT FAST Shuttle IVD (1878263). Pour plus de détails, reportez-vous au Manuel d'utilisateur MBT FAST Shuttle IVD.
- 13. Recouvrez soigneusement chaque dépôt avec 1 µL de solution de IVD Matrix HCCA. Utilisez un nouvel embout de pipette pour chaque position d'échantillon. Vérifiez que l'échantillon est bien placé et qu'aucune gouttelette de matrice ne s'écoule d'une position à une autre.
- 14. Laissez sécher MBT Biotarget 96 IVD recouvert de la matrice à une température élevée (35 ± 0,7 °C) et dans des conditions contrôlées avec MBT FAST Shuttle IVD.

Remarque En alternative au séchage avec MBT FAST Shuttle IVD (1878263), le séchage à température ambiante est également possible.

ATTENTION Après le séchage d'un échantillon, la solution IVD HCCA doit être ajoutée dans un délai de 30 minutes. Au-delà de ce délai de 30 minutes après séchage, les résultats d'identification d'un échantillon recouvert d'une solution IVD HCCA sont à ignorer. La préparation de cet échantillon doit être répétée sur une position de MBT Biotarget 96 IVD inoccupée.

ATTENTION Les plaques cibles MALDI doivent être analysées dans les 24 heures qui suivent la préparation. Si un délai supérieur à 24 heures s'est écoulé depuis la préparation, la procédure de préparation d'échantillons de la plaque cible MALDI devra être renouvelée.

15. Chargez MBT Biotarget 96 IVD dans le spectromètre de masse MALDI-TOF et effectuez la mesure.

B.4.3 Procédure d'extraction des champignons filamenteux MBT pour les échantillons en milieu liquide

Si l'identification MALDI Biotyper du micro-organisme à l'aide de la procédure MyT ou d'extraction de la gélose n'aboutit pas à une identification d'un niveau de confiance élevé, poursuivez le test en utilisant la préparation suivante :

1. Inoculez les tubes de culture liquide avec du matériel biologique et fermez le couvercle, voir Figure B-1.

Figure B-1 Tube d'incubation

2. Faites tourner les tubes dans l'agitateur rotateur, voir Figure B-2.

Figure B-2 Agitateur rotateur 360°, PTR-25

3. Incubez à 25 ± 2 °C pendant une nuit ou jusqu'à ce qu'une quantité suffisante de matériel biologique soit observée, voir Figure B-3.

Remarque La plupart des champignons filamenteux produisent suffisamment de matériel biologique pour permettre une identification réussie par MALDI-TOF MS pendant la nuit. La culture en milieu liquide a l'avantage de permettre une croissance des champignons beaucoup plus rapide que la croissance sur plaques de gélose. Il est important de ne cultiver les champignons en milieu liquide que pendant un à deux jours ou, dans de rares cas, jusqu'à ce que l'on observe une quantité suffisante de matériel biologique.

Figure B-3 Tubes de culture incubés

4. Retirez les tubes de culture de l'agitateur rotateur, placez-les sur la paillasse et attendez que le matériel biologique se dépose, voir Figure B-4. Cela prend de 2 à 10 minutes.

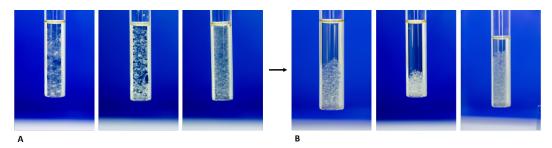


Figure B-4 Avant (A) et après (B) 10 minutes de stabilisation. Le tube du milieu (B) constitue le sédiment optimal

- 5. Prélevez 400 à 500 µL du sédiment dans un tube de réaction avec une pipette Pasteur à usage unique.
- 6. Ajouter 1 mL d'eau de qualité HPLC, voir Figure B-5.

7. Centrifugez pendant 2 minutes à pleine vitesse (13 000 à 15 000 tr/min).

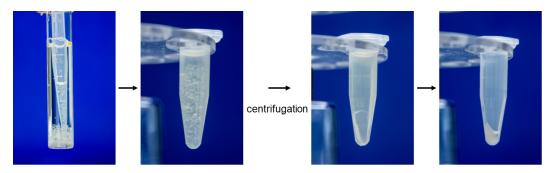


Figure B-5 Prélèvement des tubes de culture, processus de centrifugation et retrait du surnageant

Remarque En raison de la nature du mycélium, il est parfois impossible d'obtenir un culot bien défini. Dans certains cas, il ne sera pas possible de retirer complètement le surnageant et le risque de perdre la matière des champignons filamenteux est élevé. C'est pourquoi les étapes suivantes doivent faire l'objet d'une attention particulière.

- 8. Retirez soigneusement le surnageant du culot autant que possible et ajoutez 1 mL d'éthanol à 70 %.
- 9. Centrifugez pendant 2 minutes à pleine vitesse (13 000 à 15 000 tr/min).
- 10. Retirez le surnageant avec précaution en le pipetant (la décantation doit être évitée), centrifugez à nouveau pendant quelques secondes et éliminez complètement l'éthanol résiduel.
- 11. Laissez le culot sécher à l'air libre et à température ambiante pendant environ 5 minutes.

Remarque À ce stade de la préparation de l'échantillon de champignons filamenteux, il est important que le culot soit sec jusqu'à ce qu'aucune goutte excédentaire ne soit visible au niveau du tube en plastique. Un culot humide est acceptable. Si la quantité d'éthanol résiduel est trop élevée, l'efficacité d'extraction de l'acide formique à 70 % pourrait être réduite en raison des effets de dilution. Si le culot a été trop séché, le culot obtenu sera extrêmement solide et ne pourra pas être mis en suspension efficacement dans l'acide formique à 70 %. L'efficacité de l'extraction peut également être réduite. L'objectif est de produire un culot légèrement humide, sans gouttelettes d'éthanol excessives sur la paroi du tube.

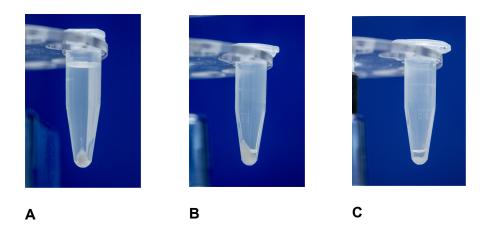


Figure B-6 Culot d'éthanol après centrifugation (A), culot d'éthanol après retrait du surnageant (B) et volume correct d'acide formique (C)

- 12. Ajouter de l'acide formique aqueux à 70 % proportionnellement à la taille du culot. Un très petit culot nécessitera 10 μL à 20 μL et un gros culot pourrait nécessiter jusqu'à 100 μL d'acide formique à 70 %, voir figure B-6.
- 13. Aspirez puis relâchez la solution avec la pipette jusqu'à ce que le culot soit bien remis en suspension.
- 14. Ajoutez le même volume d'acétonitrile dans le tube et aspirez puis relâchez la solution soigneusement.
- 15. Centrifugez pendant 2 minutes à 13 000 à 15 000 tr/min.
- Déposez 1 μL de l'extrait sur un dépôt d'échantillon sur MBT Biotarget 96 IVD.
 Utilisez un nouvel embout de pipette pour chaque nouvel extrait d'échantillon.
- 17. Déposez 1 μL de IVD BTS sur un autre dépôt d'échantillon sur MBT Biotarget 96 IVD et séchez les dépôts à température élevée (35 ± 0,7 °C) et dans des conditions contrôlées avec MBT FAST Shuttle IVD (1878263). Pour plus de détails, reportezvous au Manuel d'utilisateur MBT FAST Shuttle IVD.
- 18. Recouvrez soigneusement chaque dépôt avec 1 µL de solution de matrice IVD HCCA. Utilisez un nouvel embout de pipette pour chaque position d'échantillon. Vérifiez que l'échantillon est bien placé et qu'aucune gouttelette de matrice ne s'écoule d'une position à une autre.

- 19. Laissez sécher MBT Biotarget 96 IVD recouvert de la matrice à une température élevée (35 ± 0,7 °C) et dans des conditions contrôlées avec MBT FAST Shuttle IVD.
- **Remarque** En alternative au séchage avec MBT FAST Shuttle IVD (1878263), le séchage à température ambiante est également possible.

ATTENTION Après le séchage d'un échantillon, la solution IVD HCCA doit être ajoutée dans un délai de 30 minutes. Au-delà de ce délai de 30 minutes après séchage, les résultats d'identification d'un échantillon recouvert d'une solution IVD HCCA sont à ignorer. La préparation de cet échantillon doit

20. Chargez MBT Biotarget 96 IVD dans le spectromètre de masse MALDI-TOF et effectuez la mesure.

être répétée sur une position cible MALDI inoccupée.

ATTENTION Les plaques cibles MALDI doivent être analysées dans les 24 heures qui suivent la préparation. Si un délai supérieur à 24 heures s'est écoulé depuis la préparation, la procédure de préparation d'échantillons de la plaque cible MALDI devra être renouvelée.

Annexe C — MBT Filamentous Fungi IVD Library

C.1 Description

Le MBT HT Filamentous Fungi IVD Module contenant la version 2023 de MBT Filamentous Fungi IVD Library est utilisé pour l'identification des champignons filamenteux. Cela consiste en 934 MSPs (MSP = Main Spectrum Projection = Spectre de Référence). La composition des souches de la bibliothèque est constituée de souches de collections de cultures et de souches isolées à partir de spécimens cliniques et environnementaux fournis par les partenaires de la coopération. Toutes les souches de champignons filamenteux ont été traitées conformément au mode opératoire standard (SOP) de Bruker pour la culture des champignons filamenteux et la préparation des échantillons. La classification taxonomique est basée sur le séquençage de l'ADN chaque fois que cela est possible et sur des publications revues par des pairs afin de garantir une taxonomie mycologique de pointe.

La bibliothèque actuelle est une révision de la version MBT Filamentous Fungi IVD Library de 2022. De nombreuses études de performance clinique ont été publiées à l'aide des versions précédentes de la bibliothèque RUO, qui ont démontré la fonctionnalité principale de la procédure d'identification par MBT des champignons filamenteux dans des contextes cliniques. Les performances en termes de taux d'identification ont évolué au fil des ans avec l'augmentation du contenu des bibliothèques.

Plusieurs publications ont indiqué qu'un seuil de log(score) plus bas, même jusqu'à 1,7, est approprié pour une identification fiable. Comme la version précédente, cette version actuelle de MBT HT Filamentous Fungi IVD Module incluant la version 2023 de la MBT Filamentous Fungi IVD Library utilise un seuil de 1,8 pour une identification à haut niveau de confiance et un seuil de 1,6 pour une identification à faible niveau de confiance. Grâce à ce module et à cette bibliothèque IVD, un flux de travail optimisé a été validé. Il utilise le MBT Biotarget 96 IVD et conduit à une procédure plus pratique et plus efficace dans la préparation du MyT, réduisant le besoin de culture liquide pour l'identification.

Dans la version actuelle MBT Filamentous Fungi IVD Library 2023, 155 nouvelles entrées de référence ont été ajoutées aux 222 espèces/groupes existants dans la version MBT Filamentous Fungi IVD Library 2022, ce qui donne 934 MSP.

C.2 Procédure recommandée pour la culture des champignons filamenteux et la préparation des échantillons

Un protocole dédié à la culture des champignons filamenteux et à la préparation des échantillons développé par Bruker est disponible, voir Annexe B.

C.3 Espèces contenues dans la MBT Filamentous Fungi IVD Library

La version MBT Filamentous Fungi IVD Library 2023, qui fait partie de MBT HT Filamentous Fungi IVD Module, couvre 222 espèces/groupes de champignons filamenteux. Des restrictions concernant les niveaux d'identification en fonction des espèces sont données dans la section Indications de référence.

Tableau C-1 Liste des 222 espèces/groupes de champignons filamenteux dans la version MBT Filamentous Fungi IVD Library 2023 qui fait partie de MBT HT Filamentous Fungi IVD Module

	Espèce/Groupe
1	Absidia caerulea
2	Absidia glauca
3	Acaulium acremonium
4	Acremonium cereale
5	Acremonium chrysogenum
6	Acremonium curvulum
7	Acremonium polychromum
8	Acremonium sclerotigenum
9	Actinomucor elegans
10	Alternaria alternata
11	Alternaria infectoria
12	Alternaria rosae
13	Apophysomyces elegans
14	Arthrinium arundinis
15	Arthrinium phaeospermum
16	Arthroderma borellii
17	Arthroderma ciferrii
18	Arthroderma cuniculi
19	Arthroderma curreyi
20	Arthroderma eboreum
21	Arthroderma flavescens
22	Arthroderma gertleri
23	Arthroderma gloriae
24	Arthroderma insingulare
25	Arthroderma lenticulare
26	Arthroderma multifidum
27	Arthroderma thuringiensis
28	Arthroderma uncinatum
29	Arthrographis kalrae
30	Aspergillus brasiliensis
31	Aspergillus calidoustus
32	Aspergillus clavatus
33	Aspergillus flavus_oryzae_group
34	Aspergillus fumigatus
35	Aspergillus iizukae
36	Aspergillus japonicus

	Espèce/Groupe	
37	Aspergillus lentulus	
38	Aspergillus montevidensis	
39	Aspergillus nidulans	
40	Aspergillus niger	
41	Aspergillus ochraceus	
42	Aspergillus parasiticus	
43	Aspergillus penicillioides	
44	Aspergillus pseudoglaucus	
45	Aspergillus pulvinus	
46	Aspergillus ruber	
47	Aspergillus sclerotiorum	
48	Aspergillus sp[4]	
49	Aspergillus sydowii	
50	Aspergillus tamarii	
51	Aspergillus terreus	
52	Aspergillus tritici	
53	Aspergillus unguis	
54	Aspergillus ustus	
55	Aspergillus versicolor	
56	Aspergillus westerdijkiae	
57	Aureobasidium melanogenum pullulans	
58	Beauveria bassiana	
59	Boeremia exigua	
60	Botrytis aclada	
61	Botrytis cinerea	
62	Byssochlamys fulva	
63	Byssochlamys nivea	
64	Byssochlamys spectabilis	
65	Chaetomium globosum	
66	Chaetomium sp	
67	Chrysosporium keratinophilum	
68	Chrysosporium shanxiense	
69	Cladosporium cladosporioides	
70	Cladosporium halotolerans	
71	Cladosporium herbarum	
72	Cladosporium macrocarpum	

	Espèce/Groupe	
73	Cladosporium sphaerospermum	
74	Clonostachys rosea	
75	Colletotrichum gloeosporioides	
76	Coniochaeta hoffmannii	
77	Coniochaeta luteorubra	
78	Coniochaeta mutabilis	
79	Cordyceps farinosa	
80	Cunninghamella bertholletiae	
81	Cunninghamella elegans	
82	Curvularia sp[6]	
83	Dichotomopilus dolichotrichus	
84	Dichotomopilus funicola	
85	Didymella glomerata	
86	Didymella pomorum	
87	Epicoccum nigrum	
88	Epidermophyton floccosum	
89	Exophiala dermatitidis	
90	Fusarium avenaceum	
91	Fusarium cerealis_culmorum_group	
92	Fusarium chlamydosporum	
93	Fusarium delphinoides	
94	Fusarium dimerum	
95	Fusarium equiseti	
96	Fusarium graminearum	
97	Fusarium incarnatum	
98	Fusarium oxysporum	
99	Fusarium petroliphilum	
100	Fusarium poae	
101	Fusarium proliferatum	
102	Fusarium solani	
103	Fusarium sp	
104	Fusarium sporotrichioides	
105	Fusarium verticillioides	
106	Fusicolla aquaeductuum	
107	Lasiodiplodia sp	
108	Lichtheimia corymbifera	
109	Lichtheimia ramosa	
110	Lomentospora prolificans	
111	Metarhizium marquandii	
112	Microascus gracilis	
113	Microascus melanosporus	
114	Microsporum audouinii_canis	

	Espèce/Groupe		
115	Monascus ruber		
116	Monilinia laxa		
117	Mortierella acrotona		
118	Mortierella angusta		
119	Mortierella gamsii		
120	Mortierella sp		
121	Mucor amphibiorum		
122	Mucor circinelloides		
123	Mucor genevensis		
124	Mucor hiemalis		
125	Mucor indicus		
126	Mucor lanceolatus		
127	Mucor moelleri		
128	Mucor racemosus		
129	<i>Mucor</i> sp		
130	Nannizzia aenigmatica		
131	Nannizzia duboisii		
132	Nannizzia fulva		
133	Nannizzia gypsea		
134	Nannizzia incurvata		
135	Nannizzia persicolor		
136	Nannizzia praecox		
137	Neoscytalidium dimidiatum_hyalinum		
138	Neoscytalidium sp		
139	Ovatospora brasiliensis		
140	Ovatospora sp		
141	Paecilomyces lagunculariae		
142	Paraphyton cookei		
143	Paraphyton cookiellum		
144	Penicillium aurantiogriseum		
145	Penicillium brevicompactum		
146	Penicillium camemberti		
147	Penicillium chrysogenum		
148	Penicillium citreonigrum		
149	Penicillium citrinum		
150	Penicillium commune		
151	Penicillium corylophilum		
152	Penicillium digitatum		
153	Penicillium expansum		
154	Penicillium fellutanum		
155	Penicillium glabrum		
156	Penicillium italicum		

	Espèce/Groupe	
157	Penicillium menonorum	
158	Penicillium nalgiovense	
159	Penicillium namyslowskii	
160	Penicillium olsonii	
161	Penicillium onobense	
162	Penicillium oxalicum	
163	Penicillium pimiteouiense	
164	Penicillium roqueforti	
165	Penicillium singorense	
166	Penicillium sp*	
167	Penicillium sp*	
168	Penicillium sp[2]	
169	Penicillium turbatum	
170	Penicillium verrucosum	
171	Petriella setifera	
172	Phaeoacremonium cinereum	
173	Phialemoniopsis curvata	
174	Phoma herbarum	
175	Plectosphaerella cucumerina	
176	Pseudogymnoascus pannorum	
177	Purpureocillium lilacinum	
178	Rasamsonia argillacea	
179	Rhizomucor miehei	
180	Rhizomucor pusillus	
181	Rhizopus delemar	
182	Rhizopus microsporus	
183	Rhizopus oryzae	
184	Rhizopus stolonifer	
185	Sarocladium kiliense	
186	Sarocladium strictum	
187	Scedosporium sp[5]	
188	Schizophyllum commune	
189	Scopulariopsis brevicaulis	

	Espèce/Groupe	
190	Scytalidium sp	
191	Sporothrix schenckii	
192	Stachybotrys chartarum	
193	Stachybotrys chlorohalonata	
194	Stachybotrys echinata	
195	Syncephalastrum monosporum	
196	Syncephalastrum racemosum	
197	Talaromyces bacillisporus	
198	Talaromyces diversus	
199	Talaromyces duclauxii	
200	Talaromyces funiculosus	
201	Talaromyces islandicus	
202	Talaromyces macrosporus	
203	Talaromyces pseudostromaticus	
204	Talaromyces ruber	
205	Talaromyces rugulosus	
206	Talaromyces sp	
207	Talaromyces trachyspermus	
208	Talaromyces wortmannii	
209	Thanatephorus cucumeris	
210	Trichoderma fertile	
211	Trichoderma hamatum	
212	Trichoderma harzianum	
213	Trichoderma longibrachiatum	
214	Trichoderma orientale	
215	Trichoderma polysporum	
216	Trichoderma reesei	
217	Trichophyton mentagrophytes_group	
218	Trichophyton rubrum_group	
219	Trichophyton terrestre	
220	Trichothecium roseum	
221	Trichurus spiralis	
222	Zopfiella karachiensis	

^{*} Les deux MSP « *Penicillium* sp » sont capables d'identifier les échantillons au niveau du « genre *Penicillium* » mais sont différentes l'une de l'autre. Par conséquent, les deux MSP sont énumérés dans ce tableau.

C.4 Groupes

Le tableau suivant répertorie les groupes et leurs espèces consolidées dans la version MBT Filamentous Fungi IVD Library 2023.

Tableau C-2 Les groupes et leurs espèces consolidées

Groupe	Espèces consolidées
Aspergillus flavus_oryzae_group	Aspergillus flavus Aspergillus oryzae
Aspergillus sp[4] F45 LLH	Aspergillus candidus Aspergillus campestris Apergillus pragensis Aspergillus subalbidus
Curvularia sp[6]	Curvularia clavata Curvularia fallax Curvularia hawaiiensis Curvularia lunata Curvularia pallescens Curvularia verruculosa
Fusarium cerealis_culmorum_group	Fusarium cerealis Fusarium culmorum
Penicillium sp[2] 1331 MPA	Penicillium aurantiocandidum Penicillium cellarum
Penicillium sp[2] DSM 62843 DSM	Penicillium hispanicum Penicillum implicatum
Scedosporium sp[5]	Scedosporium apiospermum Scedosporium aurantiacum Scedosporium boydii Scedosporium dehoogii Scedosporium minutisporum

Trichophyton mentagrophytes_group	Trichophyton benhamiae Trichophyton equinum Trichophyton erinaceid Trichophyton eriotrephon Trichophyton interdigitale Trichophyton mentagrophytes Trichophyton tonsurans Trichophyton verrucosum
Trichophyton rubrum_group	Trichophyton rubrum Trichophyton violaceum

C.5 Indications de référence

Certaines espèces de champignons filamenteux ont des spectres MALDI similaires et/ou ne sont pas distinguables par le séquençage ITS. Les indications de référence présentées dans le rapport de résultats dénotent de ces corrélations rapprochées. Si elles sont disponibles, les références contenant des informations supplémentaires sont répertoriées dans le tableau des indications de référence.

Les espèces du genre Champignons filamenteux ayant des spectres de masse très similaires sont réunies en un groupe, car il n'existe pas de différenciation d'espèces fiable Possible.

Si une indication de référence est associée à un résultat d'identification, un professionnel ayant de l'expérience dans le domaine de la microbiologie doit décider quel niveau d'identification est fiable et si l'espèce ou le groupe d'espèces doit faire l'objet d'un rapport. Il est recommandé qu'un test supplémentaire de confirmation soit effectué afin d'en identifier l'espèce.

Tableau C-3 Indications de référence

Espèce/Groupe	Indication de référence	Référence
Alternaria alternata	est membre du groupe Alternaria sect. alternata ou étroitement apparenté	Woudenberg, J.H.C., Groenewald, J.Z., Binder, M., Crous, P.W., 2013. Alternaria redefined. Stud. Mycol. 75, 171–212.
Alternaria infectoria	est membre du groupe Alternaria sect. infectoriae ou étroitement apparenté	Woudenberg, J.H.C., Groenewald, J.Z., Binder, M., Crous, P.W., 2013. Alternaria redefined. Studies in Mycology 75, 171–212.
Arthrinium phaeospermum	est membre du groupe Arthrinium sect. apiospora ou étroitement apparenté	Tian, X., Karunarathna, S.C., Mapook, A., Promputtha, I., Xu, J., Bao, D., Tibpromma, S., 2021. One New Species and Two New Host Records of Apiospora from Bamboo and Maize in Northern Thailand with Thirteen New Combinations. Life 11, 1071.
Arthroderma borellii	synonyme d'Arthroderma amazonicum	S.O.
Arthroderma gertleri	étroitement apparenté à Arthroderma gloriae et pas formellement reconnaissable pour l'instant	S.O.
Arthroderma gloriae	étroitement apparenté à Arthroderma gertleri et pas formellement reconnaissable pour l'instant	S.O.
Aspergillus brasiliensis	est membre du groupe Aspergillus sect. nigri ou étroitement apparenté	Houbraken, J., Kocsubé, S., Visagie, C.M., Yilmaz, N., Wang, XC., Meijer, M., Kraak, B., Hubka, V., Bensch, K., Samson, R.A., Frisvad, J.C., 2020. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Studies in Mycology 95, 5–169.
Aspergillus calidoustus	est membre du groupe Aspergillus sect. usti ou étroitement apparenté	Houbraken, J., Kocsubé, S., Visagie, C.M., Yilmaz, N., Wang, XC., Meijer, M., Kraak, B., Hubka, V., Bensch, K., Samson, R.A., Frisvad, J.C., 2020. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Studies in Mycology 95, 5–169.
Aspergillus flavus_oryzae_ group	est membre du groupe Aspergillus sect. flavi ou étroitement apparenté	Visagie, C.M., Houbraken, J., 2020. Updating the taxonomy of Aspergillus in South Africa. Stud. Mycol. 95, 253–292.
Aspergillus fumigatus	synonyme du groupe Aspergillus neoellipticus	S.O.
Aspergillus japonicus	est membre du groupe Aspergillus sect. nigri ou étroitement apparenté	Houbraken, J., Kocsubé, S., Visagie, C.M., Yilmaz, N., Wang, XC., Meijer, M., Kraak, B., Hubka, V., Bensch, K., Samson, R.A., Frisvad, J.C., 2020. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Studies in Mycology 95, 5–169.
Aspergillus lentulus	est membre du groupe Aspergillus sect. fumigati ou étroitement apparenté	Visagie, C.M., Houbraken, J., 2020. Updating the taxonomy of Aspergillus in South Africa. Stud. Mycol. 95, 253–292.
Aspergillus montevidensis	synonyme d'Aspergillus amstelodami	S.O.

Espèce/Groupe	Indication de référence	Référence
Aspergillus niger	est membre du groupe Aspergillus sect. nigri ou étroitement apparenté	Houbraken, J., Kocsubé, S., Visagie, C.M., Yilmaz, N., Wang, XC., Meijer, M., Kraak, B., Hubka, V., Bensch, K., Samson, R.A., Frisvad, J.C., 2020. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Studies in Mycology 95, 5–169.
Aspergillus ochraceus	est membre du groupe Aspergillus sect. circumdati ou étroitement apparenté	Houbraken, J., Kocsubé, S., Visagie, C.M., Yilmaz, N., Wang, XC., Meijer, M., Kraak, B., Hubka, V., Bensch, K., Samson, R.A., Frisvad, J.C., 2020. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Studies in Mycology 95, 5–169.
Aspergillus parasiticus	est membre du groupe Aspergillus sect. flavi ou étroitement apparenté	Visagie, C.M., Houbraken, J., 2020. Updating the taxonomy of Aspergillus in South Africa. Stud. Mycol. 95, 253–292.
Aspergillus sclerotiorum	est membre du groupe Aspergillus sect. circumdati ou étroitement apparenté	Houbraken, J., Kocsubé, S., Visagie, C.M., Yilmaz, N., Wang, XC., Meijer, M., Kraak, B., Hubka, V., Bensch, K., Samson, R.A., Frisvad, J.C., 2020. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Studies in Mycology 95, 5–169.
Aspergillus sydowii	est membre du groupe Aspergillus sect. nidulantes ou étroitement apparenté	Visagie, C.M., Houbraken, J., 2020. Updating the taxonomy of Aspergillus in South Africa. Stud. Mycol. 95, 253–292.
Aspergillus tamarii	est membre du groupe Aspergillus sect. flavi ou étroitement apparenté	Visagie, C.M., Houbraken, J., 2020. Updating the taxonomy of Aspergillus in South Africa. Stud. Mycol. 95, 253–292.
Aspergillus tritici	est membre du groupe Aspergillus sect. candidi ou étroitement apparenté	Varga, J., Frisvad, J.C., Samson, R.A., 2007. Polyphasic taxonomy of Aspergillus section Candidi based on molecular, morphological and physiological data. Studies in Mycology 59, 75–88.
Aspergillus unguis	est membre du groupe Aspergillus sect. nidulantes ou étroitement apparenté	Visagie, C.M., Houbraken, J., 2020. Updating the taxonomy of Aspergillus in South Africa. Stud. Mycol. 95, 253–292.
Aspergillus ustus	est membre du groupe Aspergillus sect. usti ou étroitement apparenté	Houbraken, J., Kocsubé, S., Visagie, C.M., Yilmaz, N., Wang, XC., Meijer, M., Kraak, B., Hubka, V., Bensch, K., Samson, R.A., Frisvad, J.C., 2020. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Studies in Mycology 95, 5–169.
Aspergillus versicolor	est membre du groupe Aspergillus sect. nidulantes ou étroitement apparenté	Visagie, C.M., Houbraken, J., 2020. Updating the taxonomy of Aspergillus in South Africa. Stud. Mycol. 95, 253–292.
Aspergillus westerdijkiae	est membre du groupe Aspergillus sect. circumdati ou étroitement apparenté	Houbraken, J., Kocsubé, S., Visagie, C.M., Yilmaz, N., Wang, XC., Meijer, M., Kraak, B., Hubka, V., Bensch, K., Samson, R.A., Frisvad, J.C., 2020. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Studies in Mycology 95, 5–169.

Espèce/Groupe	Indication de référence	Référence
Boeremia exigua	est membre du groupe Boeremia ou étroitement apparenté	Marin-Felix, Y., Groenewald, J.Z., Cai, L., Chen, Q., Marincowitz, S., Barnes, I., Bensch, K., Braun, U., Camporesi, E., Damm, U., de Beer, Z.W., Dissanayake, A., Edwards, J., Giraldo, A., Hernández-Restrepo, M., Hyde, K.D., Jayawardena, R.S., Lombard, L., Luangsa-ard, J., McTaggart, A.R., Rossman, A.Y., Sandoval-Denis, M., Shen, M., Shivas, R.G., Tan, Y.P., van der Linde, E.J., Wingfield, M.J., Wood, A.R., Zhang, J.Q., Zhang, Y., Crous, P.W., 2017. Genera of phytopathogenic fungi: GOPHY 1. Studies in Mycology 86, 99–216.
Botrytis aclada	est membre du groupe Botrytis 1 ou étroitement apparenté	Walker, AS., 2016. Diversity Within and Between Species of Botrytis, in: Fillinger, S., Elad, Y. (Eds.), Botrytis – the Fungus, the Pathogen and Its Management in Agricultural Systems. Springer International Publishing, Cham, pp. 91–125.
Botrytis cinerea	est membre du groupe Botrytis 1 ou étroitement apparenté	Walker, AS., 2016. Diversity Within and Between Species of Botrytis, in: Fillinger, S., Elad, Y. (Eds.), Botrytis – the Fungus, the Pathogen and Its Management in Agricultural Systems. Springer International Publishing, Cham, pp. 91–125.
Byssochlamys fulva	est membre du groupe Byssochlamys 1 ou étroitement apparenté	Samson, R.A., Houbraken, J., Varga, J., Frisvad, J.C., 2009. Polyphasic taxonomy of the heat resistant ascomycete genus Byssochlamys and its Paecilomyces anamorphs. Pers - Int Mycol J 22, 14–27.
Byssochlamys nivea	est membre du groupe Byssochlamys 1 ou étroitement apparenté	Samson, R.A., Houbraken, J., Varga, J., Frisvad, J.C., 2009. Polyphasic taxonomy of the heat resistant ascomycete genus Byssochlamys and its Paecilomyces anamorphs. Pers - Int Mycol J 22, 14–27.
Byssochlamys spectabilis	synonyme de Paecilomyces variotii	S.O.
Chaetomium globosum	est membre du groupe Chaetomium 2 ou étroitement apparenté	Wang, X.W., Lombard, L., Groenewald, J.Z., Li, J., Videira, S.I.R., Samson, R.A., Liu, X.Z., Crous, P.W., 2016. Phylogenetic reassessment of the Chaetomium globosum species complex. Pers - Int Mycol J 36, 83–133.
Cladosporium cladosporioides	est membre du complexe Cladosporium cladosporioides	Sandoval-Denis, M., Gené, J., Sutton, D.A., Wiederhold, N.P., Cano-Lira, J.F., Guarro, J., 2016. New species of Cladosporium associated with human and animal infections. Pers - Int Mycol J 36, 281–298.
Cladosporium herbarum	est membre du complexe Cladosporium herbarum	Sandoval-Denis, M., Gené, J., Sutton, D.A., Wiederhold, N.P., Cano-Lira, J.F., Guarro, J., 2016. New species of Cladosporium associated with human and animal infections. Pers - Int Mycol J 36, 281–298.
Cladosporium macrocarpum	est membre du complexe Cladosporium herbarum	Sandoval-Denis, M., Gené, J., Sutton, D.A., Wiederhold, N.P., Cano-Lira, J.F., Guarro, J., 2016. New species of Cladosporium associated with human and animal infections. Pers - Int Mycol J 36, 281–298.
Clonostachys rosea	est membre du groupe Clonostachys sect. clonostachys ou étroitement apparenté	Forin, N., Vizzini, A., Nigris, S., Ercole, E., Voyron, S., Girlanda, M., Baldan, B., 2020. Illuminating type collections of nectriaceous fungi in Saccardo's fungarium. persoonia 45, 221–249.
Colletotrichum gloeosporioides	synonyme de Colletotrichum aeschynomenes	S.O.

Espèce/Groupe	Indication de référence	Référence
Coniochaeta luteorubra	synonyme de Coniochaeta hoffmannii	S.O.
Dichotomopilus funicola	est membre du groupe Dichotomopilus gen. nov. ou étroitement apparenté	Wang, X.W., Houbraken, J., Groenewald, J.Z., Meijer, M., Andersen, B., Nielsen, K.F., Crous, P.W., Samson, R.A., 2016. Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Studies in Mycology 84, 145–224.
Didymella glomerata	est membre du groupe de clades Didymella peyronellaea — ou étroitement apparenté	Scarpari, M., Vitale, S., Di Giambattista, G., Luongo, L., De Gregorio, T., Schreiber, G., Petrucci, M., Belisario, A., Voglmayr, H., 2020. Didymella corylicola sp. nov., a new fungus associated with hazelnut fruit development in Italy. Mycol Progress 19, 317–328.
Didymella pomorum	est membre du groupe Didymella sect. didymella ou étroitement apparenté	Keirnan, E.C., Tan, Y.P., Laurence, M.H., Mertin, A.A., Liew, E.C.Y., Summerell, B.A., Shivas, R.G., 2021. Cryptic diversity found in Didymellaceae from Australian native legumes. MC 78, 1–20.
Epicoccum nigrum	est membre du groupe Epicoccum ou étroitement apparenté	Chen, Q., Hou, L.W., Duan, W.J., Crous, P.W., Cai, L., 2017. Didymellaceae revisited. Studies in Mycology 87, 105–159.
Fusarium delphinoides	est membre du groupe d'espèces Fusarium dimerum ou étroitement apparenté	Schroers, HJ., O'Donnell, K., Lamprecht, S.C., Kammeyer, P.L., Johnson, S., Sutton, D.A., Rinaldi, M.G., Geiser, D.M., Summerbell, R.C., 2009. Taxonomy and phylogeny of the Fusarium dimerum species group. Mycologia 101, 44–70.
Fusarium dimerum	est membre du groupe d'espèces Fusarium dimerum ou étroitement apparenté	Schroers, HJ., O'Donnell, K., Lamprecht, S.C., Kammeyer, P.L., Johnson, S., Sutton, D.A., Rinaldi, M.G., Geiser, D.M., Summerbell, R.C., 2009. Taxonomy and phylogeny of the Fusarium dimerum species group. Mycologia 101, 44–70.
Fusarium graminearum	étroitement apparenté à Fusarium cerealis_culmorum, groupe Fusarium sambucinum SC et pas formellement reconnaissable pour l'instant	Stępniewska, H., Jankowiak, R., Bilański, P., Hausner, G., 2021. Structure and Abundance of Fusarium Communities Inhabiting the Litter of Beech Forests in Central Europe. Forests 12, 811.
Fusarium incarnatum	est membre du complexe d'espèces Fusarium fujikuroi	Villani, A., Proctor, R.H., Kim, HS., Brown, D.W., Logrieco, A.F., Amatulli, M.T., Moretti, A., Susca, A., 2019. Variation in secondary metabolite production potential in the Fusarium incarnatum-equiseti species complex revealed by comparative analysis of 13 genomes. BMC Genomics 20, 314.
Fusarium oxysporum	étroitement apparenté à Fusarium proliferatum, Fusarium verticillioides et pas formellement reconnaissable pour l'instant	S.O.
Fusarium petroliphilum	synonyme de Fusarium solani var. petroliphilum	S.O.
Fusarium proliferatum	est membre du complexe d'espèces Fusarium fujikuroi	Villani, A., Proctor, R.H., Kim, HS., Brown, D.W., Logrieco, A.F., Amatulli, M.T., Moretti, A., Susca, A., 2019. Variation in secondary metabolite production potential in the Fusarium incarnatum-equiseti species complex revealed by comparative analysis of 13 genomes. BMC Genomics 20, 314.
Fusarium solani	est membre du complexe Fusarium solani	J.F., de Hoog, G.S., 2018. Fusarium metavorans sp. nov.: The frequent opportunist 'FSSC6.' Medical Mycology 56, S144–S152.

Espèce/Groupe	Indication de référence	Référence	
Fusarium sporotrichioides	est membre du groupe Fusarium sambucinum ou étroitement apparenté	Villani, A., Proctor, R.H., Kim, HS., Brown, D.W., Logrieco, A.F., Amatulli, M.T., Moretti, A., Susca, A. 2019. Variation in secondary metabolite production potential in the Fusarium incarnatum-equiseti specicomplex revealed by comparative analysis of 13 genomes. BMC Genomics 20, 314.	
Fusarium verticillioides	est membre du complexe d'espèces Fusarium fujikuroi	Villani, A., Proctor, R.H., Kim, HS., Brown, D.W., Logrieco, A.F., Amatulli, M.T., Moretti, A., Susca, A., 2019. Variation in secondary metabolite production potential in the Fusarium incarnatum-equiseti species complex revealed by comparative analysis of 13 genomes. BMC Genomics 20, 314.	
Lomentospora prolificans	étroitement apparenté à Petriella setifera et pas formellement reconnaissable pour l'instant	S.O.	
Monascus ruber	est membre du groupe Monascus section rubri ou étroitement apparenté	Barbosa, R.N., n.d. Phylogenetic analysis of Monascus and new species from honey, pollen and nests of stingless bees 23.	
Mortierella angusta	est membre du groupe Mortierella angusta ou étroitement apparenté	Wagner, L., Stielow, B., Hoffmann, K., Petkovits, T., Papp, T., Vágvölgyi, C., de Hoog, G.S., Verkley, G., Voigt, K., 2013. A comprehensive molecular phylogeny of the Mortierellales (Mortierellomycotina) based on nuclear ribosomal DNA. Pers - Int Mycol J 30, 77–93.	
Neoscytalidium sp	synonyme de Scytalidium sp.	s.o.	
Ovatospora brasiliensis	est membre du groupe Ovatospora gen. nov. ou étroitement apparenté	Wang, X.W., Houbraken, J., Groenewald, J.Z., Meijer, M., Andersen, B., Nielsen, K.F., Crous, P.W., Samson, R.A., 2016. Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Stud. Mycol. 84, 145–224.	
Ovatospora sp	synonyme de Chaetomium sp.	S.O.	
Paecilomyces lagunculariae	synonyme de Byssochlamys nivea	S.O.	
Penicillium aurantiogriseum	est membre du groupe Penicillium clade 15–23 ou étroitement apparenté	Houbraken, J., Samson, R.A., 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70, 1–51.	
Penicillium brevicompactum	est membre du groupe Penicilium sect. brevicompacta ou étroitement apparenté	Houbraken, J., Samson, R.A., 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70, 1–51.	
Penicillium camemberti	est membre du groupe Penicilium sect. fasciculata ou étroitement apparenté	Houbraken, J., Samson, R.A., 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70, 1–51.	
Penicillium chrysogenum	est membre du groupe Penicillium sect. chrysogena ou étroitement apparenté	Houbraken, J., Samson, R.A., 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70, 1–51.	
Penicillium citreonigrum	est membre du groupe Penicillium sect. exilicaulis ou étroitement apparenté	Houbraken, J., Samson, R.A., 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70, 1–51.	
Penicillium citrinum	est membre du groupe Penicilium sect. citrina ou étroitement apparenté	Houbraken, J., Samson, R.A., 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70, 1–51.	
Penicillium commune	est membre du groupe Penicilium sect. fasciculata ou étroitement apparenté	Houbraken, J., Samson, R.A., 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70, 1–51.	

Espèce/Groupe	Indication de référence	Référence	
Penicillium corylophilum	est membre du groupe Penicilium sect. exilicaulis ou étroitement apparenté	Houbraken, J., Samson, R.A., 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70, 1–51.	
Penicillium digitatum	est membre du groupe Penicillium clade 15–23 ou étroitement apparenté	Houbraken, J., Samson, R.A., 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70, 1–51.	
Penicillium expansum	est membre du groupe Penicillium clade 15–23 ou étroitement apparenté	Houbraken, J., Samson, R.A., 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70, 1–51.	
Penicillium fellutanum	est membre du groupe Penicillium sect. charlesii / sect. sclerotiora ou étroitement apparenté	Houbraken, J., Samson, R.A., 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70, 1–51.	
Penicillium glabrum	est membre du complexe Penicillium glabrum	Barreto, M.C., Houbraken, J., Samson, R.A., Frisvad, J.C., San-Romão, M.V., 2011. Taxonomic studies of the Penicillium glabrum complex and the description of a new species P. subericola. Fungal Diversity 12.	
Penicillium italicum	est membre du groupe Penicillium clade 15–23 ou étroitement apparenté	Houbraken, J., Samson, R.A., 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70, 1–51.	
Penicillium menonorum	étroitement apparenté à Penicilium sect. exilicaulis et pas formellement reconnaissable pour l'instant	S.O.	
Penicillium namyslowskii	est membre du groupe Penicillium sect. exilicaulis ou étroitement apparenté	Houbraken, J., Samson, R.A., 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70, 1–51.	
Penicillium olsonii	est membre du groupe Penicilium sect. brevicompacta ou étroitement apparenté	Houbraken, J., Samson, R.A., 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70, 1–51.	
Penicillium onobense	est membre du groupe Penicillium ser. simplicissima ou étroitement apparenté	Hotta, Y., Sato, J., Sato, H., Hosoda, A., Tamura, H., 2011. Classification of the Genus Bacillus Based on MALDI-TOF MS Analysis of Ribosomal Proteins Coded in S10 and spc Operons. J. Agric. Food Chem. 110415093730042.	
Penicillium pimiteouiense	est membre du groupe Penicilium sect. exilicaulis ou étroitement apparenté	Houbraken, J., Samson, R.A., 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70, 1–51.	
Penicillium roqueforti	est membre du groupe Penicillium sect. roquefortorum ou étroitement apparenté	Houbraken, J., Samson, R.A., 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70, 1–51.	
Penicillium singorense	est membre du groupe Penicillium ser. dalearum ou étroitement apparenté	Hotta, Y., Sato, J., Sato, H., Hosoda, A., Tamura, H. 2011. Classification of the Genus Bacillus Based on MALDI-TOF MS Analysis of Ribosomal Proteins Coded in S10 and spc Operons. J. Agric. Food Chem. 110415093730042.	
Penicillium turbatum	est membre du groupe Penicillium sect. turbata ou étroitement apparenté	Houbraken, J., Samson, R.A., 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70, 1–51.	
Penicillium verrucosum	est membre du groupe Penicillium clade 15–23 ou étroitement apparenté	Houbraken, J., Samson, R.A., 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70, 1–51.	
Petriella setifera	étroitement apparenté à Lomentospora prolificans et pas formellement reconnaissable pour l'instant	S.O.	
Phialemoniopsis curvata	synonyme de Thyridium curvatum	S.O.	
Phialemoniopsis	l'instant		

Espèce/Groupe	Indication de référence	Référence	
Plectosphaerella cucumerina	est membre du groupe Plectosphaerella 1 ou étroitement apparenté	Lei Su, H. Deng, Y. Niu Phylogenetic analysis of Plectosphaerella species based on multi-locus DNA sequences and description of P. sinensis sp. nov.	
Rasamsonia argillacea	est membre du groupe Rasamsonia clade a ou étroitement apparenté	Houbraken, J., Giraud, S., Meijer, M., Bertout, S., Frisvad, J.C., Meis, J.F., Bouchara, J.P., Samson, R.A., 2013. Taxonomy and Antifungal Susceptibility of Clinically Important Rasamsonia Species. J Clin Microbiol 51, 22–30.	
Rhizopus oryzae	synonyme de Rhizopus arrhizus	S.O.	
Scopulariopsis brevicaulis	est membre du groupe Scopulariopsis sec. scopulariopsis ou étroitement apparenté	Sandoval-Denis, M., Gené, J., Sutton, D.A., Cano- Lira, J.F., de Hoog, G.S., Decock, C.A., Wiederhold, N.P., Guarro, J., 2016. Redefining Microascus, Scopulariopsis and allied genera. Pers - Int Mycol J 36, 1–36.	
Sporothrix schenckii	est membre du groupe de souches d'espèces Sporothrix ou étroitement apparenté	Zhang, Y., Hagen, F., Stielow, B., Rodrigues, A.M., Samerpitak, K., Zhou, X., Feng, P., Yang, L., Chen, M., Deng, S., Li, S., Liao, W., Li, R., Li, F., Meis, J.F., Guarro, J., Teixeira, M., Al-Zahrani, H.S., de Camargo, Z.P., Zhang, L., de Hoog, G.S., 2015. Phylogeography and evolutionary patterns in Sporothrix spanning more than 14 000 human and animal case reports. Pers - Int Mycol J 35, 1–20.	
Stachybotrys chartarum	étroitement apparenté à Stachybotrys chlorohalonata et pas formellement reconnaissable pour l'instant	s.o.	
Stachybotrys chlorohalonata	étroitement apparenté à Stachybotrys chartarum et pas formellement reconnaissable pour l'instant	S.O.	
Stachybotrys echinata	est membre du groupe Stachybotryaceae ou étroitement apparenté	Tibpromma, S., Boonmee, S., Wijayawardene, N.N., Maharachchikumbura, S.S.N., Mckenzie, E.H.C., Bahkali, A.H., E.B. Gareth, J.E.B., Hyde, K.D., Promputtha, I., 2016. The holomorph of Parasarcopodium (Stachybotryaceae), introducing P. pandanicola sp. nov. on Pandanus sp. Phytotaxa 266, 250.	
Talaromyces duclauxii	est membre du groupe Talaromyces sect. talaromyces ou étroitement apparenté	Sun, BD., Chen, A.J., Houbraken, J., Frisvad, J.C., Wu, WP., Wei, HL., Zhou, YG., Jiang, XZ., Samson, R.A., 2020. New section and species in Talaromyces. MC 68, 75–113.	
Talaromyces funiculosus	est membre du groupe Talaromyces sect. talaromyces ou étroitement apparenté	Sun, BD., Chen, A.J., Houbraken, J., Frisvad, J.C., Wu, WP., Wei, HL., Zhou, YG., Jiang, XZ., Samson, R.A., 2020. New section and species in Talaromyces. MC 68, 75–113.	
Talaromyces macrosporus	est membre du groupe Talaromyces sect. talaromyces ou étroitement apparenté	Sun, BD., Chen, A.J., Houbraken, J., Frisvad, J.C., Wu, WP., Wei, HL., Zhou, YG., Jiang, XZ., Samson, R.A., 2020. New section and species in Talaromyces. MC 68, 75–113.	
Talaromyces pseudostromaticus	est membre du groupe Talaromyces sect. purpurei ou étroitement apparenté	Sun, BD., Chen, A.J., Houbraken, J., Frisvad, J.C., Wu, WP., Wei, HL., Zhou, YG., Jiang, XZ., Samson, R.A., 2020. New section and species in Talaromyces. MC 68, 75–113.	
Talaromyces ruber	est membre du groupe Talaromyces sect. talaromyces ou étroitement apparenté	Sun, BD., Chen, A.J., Houbraken, J., Frisvad, J.C., Wu, WP., Wei, HL., Zhou, YG., Jiang, XZ., Samson, R.A., 2020. New section and species in Talaromyces. MC 68, 75–113.	

Espèce/Groupe	Indication de référence	Référence	
Talaromyces rugulosus	est membre du groupe Talaromyces sect. islandici ou étroitement apparenté	Sun, BD., Chen, A.J., Houbraken, J., Frisvad, J.C Wu, WP., Wei, HL., Zhou, YG., Jiang, XZ., Samson, R.A., 2020. New section and species in Talaromyces. MC 68, 75–113.	
Talaromyces trachyspermus	est membre du groupe Sun, BD., Chen, A.J., Hou Wu, WP., Wei, HL., Zhou		
Talaromyces wortmannii	est membre du groupe Talaromyces sect. talaromyces ou étroitement apparenté	Sun, BD., Chen, A.J., Houbraken, J., Frisvad, J.C., Wu, WP., Wei, HL., Zhou, YG., Jiang, XZ., Samson, R.A., 2020. New section and species in Talaromyces. MycoKeys 68, 75–113.	
Thanatephorus cucumeris	synonyme de Bjerkandera adusta	S.O.	
Trichoderma fertile	est membre du groupe Trichoderma sect. semiorbis ou étroitement apparenté	Jaklitsch, W.M., Voglmayr, H., 2015. Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Stud. Mycol. 80, 1–87.	
Trichoderma hamatum	est membre du groupe de clades Trichoderma section hamatum* ou étroitement apparenté	Druzhinina, I.S., Kopchinskiy, A.G., Kubicek, C.P., 2006. The first 100 Trichoderma species characterized by molecular data. Mycoscience 47, 55–64.	
Trichoderma harzianum	est membre du complexe d'espèces Trichoderma harzianum	Chaverri, P., Branco-Rocha, F., Jaklitsch, W., Gazis, R., Degenkolb, T., Samuels, G.J., 2015. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107, 558–590.	
Trichoderma Iongibrachiatum	est membre du groupe Trichoderma section longibrachiatum ou étroitement apparenté	Druzhinina, I.S., Kopchinskiy, A.G., Kubicek, C.P., 2006. The first 100 Trichoderma species characterized by molecular data. Mycoscience 47, 55–64.	
Trichoderma orientale	est membre du groupe Trichoderma section longibrachiatum ou étroitement apparenté	Druzhinina, I.S., Kopchinskiy, A.G., Kubicek, C.P., 2006. The first 100 Trichoderma species characterized by molecular data. Mycoscience 47, 55–64.	
Trichoderma polysporum	est membre du groupe de clades Trichoderma section polysporum ou étroitement apparenté	Jaklitsch, W.M., Voglmayr, H., 2015. Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Stud. Mycol. 80, 1–87.	
Trichoderma reesei	est membre du groupe Trichoderma section longibrachiatum ou étroitement apparenté	Jaklitsch, W.M., Voglmayr, H., 2015. Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Stud. Mycol. 80, 1–87.	
Trichophyton mentagrophytes_ group	est membre du groupe Trichophyton mentagrophytes ou étroitement apparenté	Gräser, Y., Kuijpers, A.F.A., Presber, W., De Hoog, G.S., 2008. Molecular taxonomy of Trichophyton mentagrophytes and T. tonsurans: Taxonomy of dermatophytes. Med Mycol 37, 315–330.	
Trichophyton rubrum_group	est membre du groupe Trichophyton rubrum ou étroitement apparenté	Gräser, Y., Kuijpers, A.F.A., Presber, W., de Hoog, G.S., 2000. Molecular Taxonomy of the Trichophyton rubrum Complex. Journal of Clinical Microbiology 38, 3329–3336.	
Trichophyton terrestre	synonyme d'Arthroderma quadrifidum	S.O.	
Trichurus spiralis	est membre du groupe Cephalotrichum gorgonifer ou étroitement apparenté	Sandoval-Denis, M., Guarro, J., Cano-Lira, J.F., Sutton, D.A., Wiederhold, N.P., de Hoog, G.S., Abbott, S.P., Decock, C., Sigler, L., Gené, J., 2016. Phylogeny and taxonomic revision of Microascaceae with emphasis on synnematous fungi. Studies in Mycology 83, 193–233.	

Tableau C-4 Indications de référence supplémentaires dans la version MBT Filamentous Fungi IVD Library 2023

Espèce/Groupe	Indications de référence	Référence
Aspergillus ruber	est un membre de la section ou du groupe Aspergillus ou y est étroitement apparenté	Houbraken, J., Kocsubé, S., Visagie, C.M., Yilmaz, N., Wang, X C., Meijer, M., Kraak, B., Hubka, V., Bensch, K., Samson, R.A., Frisvad, J.C., 2020. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Studies in Mycology 95, 5–169.
Cladosporium halotolerans	étroitement lié à Cladosporium sphaerospermum et pas formellement reconnaissable pour l'instant	S.O.
Cladosporium sphaerospermum	étroitement lié à Cladosporium halotolerans et pas formellement reconnaissable pour l'instant	S.O.
Fusarium cerealis_ culmorum_ group	étroitement lié à Cladosporium halotolerans et pas formellement reconnaissable pour l'instant	S.O.

Bruker Index

Index		P	
		Préparation de l'échantillon	
Α		culture en milieu liquide	33
Accessoires		Produits chimiques	
requis	28	requis	27
D			
Dépannage	20		
E			
Équipement			
requis	27		
F			
Fabricant	3		
1			
Installation			
logiciel	15		
L			
Logiciel			
installation	15		
M			
Matériel fourni	13		
MBT HT Filamentous Fungi IVD Module			
dépannage	20		
MvT	29		