New molecular tools for serotyping for *S. pneumoniae* invasive strains surveillance in the province of Quebec.

Principal Investigator

Brigitte Lefebvre, Ph. D. Laboratoire de santé publique du Québec

Co-Pl

Cécile Tremblay, MD, Pfizer/University of Montreal Chair on HIV Translational Research, University of Montreal.

Director, Laboratoire de santé publique du Québec

Co-Investigator

Simon Lévesque, Ph. D. Laboratoire de santé publique du Québec

Co-Investigator Sadjia Bekal, Ph. D. Laboratoire de santé publique du Québec

Co-Investigator

Marc-Christian Domingo, Ph. D. Laboratoire de santé publique du Québec

Background

Streptococcus pneumoniae is responsible for various infections such as pneumonia, otitis, sinusitis, peritonitis, endocarditis and meningitis⁽¹⁾. The incidence of invasive *S. pneumoniae* is often used as an indicator of the burden of pneumococcal disease. Virulence and invasiveness varies among serotypes. In pneumococcus, several virulence factors are known; among these, the *cps* locus encoded capsule is a crucial one, as the prime target for vaccine development. Although several vaccines (PCV-7, PCV-10, PCV-13 and PCV-23) with different coverage have been developed against *S. pneumoniae*, invasive pneumococcal disease remains a public health concern since a vaccine replacement phenomenon is observed⁽²⁾.

Since 1990, *S. pneumoniae* serotype is determined using the Quellung's technique in most laboratories⁽³⁾. This standard method uses antisera to reveal the swelling of the capsule through an antibody-antigen reaction^(1,4). This technique is laborious, expensive and requires technical expertise. Although this technique is recognized as the reference method, it can lead to erroneous results because it is subjective. Indeed, serotyping results are obtained through microscope observation of capsular swelling which in some cases is difficult to observe. As more than 90 serotypes of *S. pneumoniae* have been described to date⁽¹⁾, a serotyping algorithm must be applied using different antisera which makes the task tedious and time consuming.

Rapid molecular techniques are now being evaluated to perform serotyping. A review of several published methods to determine the serotype of *S. pneumoniae* is presented in Table 1⁽⁴⁻¹⁹⁾. Among the six methods presented, two cannot be used as part of a surveillance program. The whole genome sequencing (WGS) is a method which generates data that are not all relevant in the current context of monitoring⁽¹⁷⁻¹⁹⁾. However, WGS may help to understand the mechanism of replacement and adaptation through possible recombination in the *S. pneumoniae* strains in response to vaccination ⁽²⁰⁾. Although

promising, EIMS^(11,12) method, is not available to the Quebec market. Microarrays⁽¹³⁻¹⁴⁾ technology allows rapid genes resistance and virulence identification. However, microarrays equipment is not more available at LSPQ. We retained the other three methods based on the following criteria: cost analysis, technology availability at the LSPQ and timely delivery of results. In the case of sequetyping⁽¹⁰⁾, unlike multiplex PCR (which remains the most cost effective⁽⁵⁻⁹⁾), the method does not require adaptation to local epidemiology of circulating serotypes. For all molecular methods described, the literature reports that a certain percentage of serotype strains cannot be determined. In which case an alternative path must then be considered like Quellung's serotyping method.

We propose to evaluate various molecular techniques for rapid serotyping of *S. pneumoniae* strains as compared with Quellung gold standard, including all invasive strains isolated from children and adults in the province of Quebec.

Methods: Molecular method comparison (using LSPQ collection of invasive *S. pneumoniae* strains) with gold standard method (Quellung) and WGS to study the impact of vaccine on serotype replacement.

1- Monitoring tools :

- Multiplex PCR
- Sequetyping

Phase 1 : For the development, 20 selected strains will be used to fine tune and develop the methods.

Phase 2 : For the proof-concept, an additional 100 strains will be analyzed using the two molecular methods. The third method, WGS, will be performed on 10 strains. The strain collection will be representative of various circulating serotypes, including serotypes (19A, 7F, 3, 22F, 9N, 15A, 6C) and all serotypes included in currently used vaccines. Molecular methods will be compared to the Quellung gold standard method. After the proof-concept period, the most efficient method will be retained and used for surveillance programme. The choice will be based on cost effectiveness, efficiency, cost of reactive, cost of technical time, accuracy and professional expertise.

2- Molecular basis of vaccine replacement by WGS :

WGS will be performed on 10 selected strains to study pneumococcus post-vaccine changes through two approaches:

- Pre- and post-vaccine follow-up for serotyping evolution.
- Identification of putative vaccine target.

Time-line (See Annex 1)

Steps	Lenght
Development: Strains' selection and development of 3 molecular methods for serotyping	1 year
Proof of concept: -Molecular methods will be compared with Quellung gold standard method and WGS -Evaluation on our surveillance programme in the design of vaccines using the new validated method.	1 year
Publication and conference organization	At the end of study

Project Benefits

- 1- Implementation of an active monitoring tool of invasive *S. pneumoniae* serotypes.
- 2- Reduction of delays and costs associated with the provincial monitoring program of invasive strains of *S. pneumoniae* using optimized serotyping methods.
- 3- Potential increase of provincial surveillance program capacity building due to cost effectiveness.
- 4- Identification of putative vaccine target.
- 5- Better understanding of vaccine replacement mechanism.

Deliverables

- 1- Set up of a new molecular serotyping method.
- 2- Data from the study will be presented at a scientific meeting and published in a peer reviewed journal.

References

- 1- Spellerberg, B. and Brandt C. *Streptococcus*. 2011. Manual of clinical microbiology. 10th edition. American Society for microbiology, Washington, D.C.
- 2- Lefebvre B., C. L. Tremblay. 2012. Programme de surveillance du pneumocoque. Rapport 2011. INSPQ. ISBN : 978-2-550-66364-5.
- 3- Sorensen, U. B. 1993. Typing of pneumococci by using 12 pooled antisera. J. Clin. Microbiol. 31:2097-2100.
- 4- Austrian, R. 1976. The quellung reaction, a neglected microbiologic technique. Mt. Sinai J. Med 43:699-709.
- 5- http://www.cdc.gov/ncidod/biotech/strep/strepindex.htm
- 6- Pai, R., R. E. Gertz, and B. Beall. 2006. Sequential multiplex PCR approach for determining capsular serotypes of *Streptococcus pneumoniae* isolates. J. Clin. Microbiol. 44:124-131.
- 7- Iraurgui, P., M. J. Torres, A. Gandia, I. Vazquez, E. G. Cabrera, I. Obando, J. Garnacho, and J. Aznar. 2010. Modified sequential multiplex PCR for determining capsular serotypes of invasive pneumococci recovered from Seville. Clin. Microbiol. Infect. 16:1504-1507.
- 8- Yun, K. W., E. Y. Cho, K. B. Hong, E. H. Choi, and H. J. Lee. 2011. *Streptococcus pneumoniae* type determination by multiplex polymerase chain reaction. J. Korean Med. Sci. 26:971-978.
- 9- Siira, L., T. Kaijalainen, L. Lambertsen, M. H. Nahm, M. Toropainen, and A. Virolainen. 2012. From Quellung to multiplex PCR, and back when needed, in pneumococcal serotyping. J. Clin. Microbiol. 50:2727-2731.
- Leung, M. H., K. Bryson, K. Freystatter, B. Pichon, G. Edwards, B. M. Charalambous, and S. H. Gillespie. 2012. Sequetyping: serotyping *Streptococcus pneumoniae* by a single PCR sequencing strategy. J.Clin. Microbiol. 50:2419-2427.
- Massire, C., R. E. Gertz, Jr., P. Svoboda, K. Levert, M. S. Reed, J. Pohl, R. Kreft, F. Li, N. White, R. Ranken, L. B. Blyn, D. J. Ecker, R. Sampath, and B. Beall. 2012. Concurrent serotyping and genotyping of pneumococci by use of PCR and electrospray ionization mass spectrometry. J. Clin. Microbiol. 50:2018-2025.
- 12- Wolk, D. M., E. J. Kaleta, and V. H. Wysocki. 2012. PCR-electrospray ionization mass spectrometry: the potential to change infectious disease diagnostics in clinical and public health laboratories. J. Mol. Diagn. 14:295-304.
- 13- Wang, Q., M. Wang, F. Kong, G. L. Gilbert, B. Cao, L. Wang, and L. Feng. 2007. Development of a DNA microarray to identify the *Streptococcus pneumoniae* serotypes contained in the 23-valent pneumococcal polysaccharide vaccine and closely related serotypes. J. Microbiol. Methods 68:128-136.
- 14- Tomita, Y., A. Okamoto, K. Yamada, T. Yagi, Y. Hasegawa, and M. Ohta. 2011. A new microarray system to detect *Streptococcus pneumoniae* serotypes. J. Biomed. Biotechnol. 2011:352736.

- 15- Gervaix, A., J. Taguebue, B. N. Bescher, J. Corbeil, F. Raymond, G. Alcoba, M. Kobela, and E. Tetanye. 2012. Bacterial meningitis and pneumococcal serotype distribution in children in cameroon. Pediatr. Infect. Dis. J. 31:1084-1087.
- 16- Raymond F; Boucher N; Allary R; Robitaille L; Lefebvre B; Tremblay C; Corbeil J; Gervaix A. Serotyping of Streptococus pneumoniae based on capsular genes polymorphisms. PLoS One; Sept. 24, 2013, http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0076197.
- 17- Fani, F., P. Leprohon, D. Legare, and M. Ouellette. 2011. Whole genome sequencing of penicillin-resistant *Streptococcus pneumoniae* reveals mutations in penicillin-binding proteins and in a putative iron permease. Genome Biol. 12:R115.
- 18- Billal, D. S., J. Feng, P. Leprohon, D. Legare, and M. Ouellette. 2011. Whole genome analysis of linezolid resistance in *Streptococcus pneumoniae* reveals resistance and compensatory mutations. BMC Genomics 12:512.
- 19- Hu, F. Z., R. Eutsey, A. Ahmed, N. Frazao, E. Powell, N. L. Hiller, T. Hillman, F. J. Buchinsky, R. Boissy, B. Janto, J. Kress-Bennett, M. Longwell, S. Ezzo, J. C. Post, M. Nesin, A. Tomasz, and G. D. Ehrlich. 2012. In Vivo Capsular Switch in *Streptococcus pneumoniae* Analysis by Whole Genome Sequencing. PLoS One. 7:e47983.
- 20- Croucher NJ, Finkelstein JA, Pelton SI, Mitchell PK, Lee GM, Parkhill J, Bentley SD, Hanage WP, Lipsitch M. 2013 Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat Genet. Jun;45(6):656-63.

Table 1. Comparison of different methods for S. pneumoniae serotyping.

Method	Quellung	Multiplex PCR	Sequetyping	Electrospray ionization mass spectrometry (EIMS)	Microarray	Whole genome sequencing
Brief description	Determination of serotype with antisera (swelling of the capsule)	Multiplex PCR cascading up to 8 different PCR reactions (method adapted from CDC protocol)	PCR cpsB and amplicon sequencing (~ 1000 pb)	Five multiplex PCR microplates, followed by analysis of mass spectrometry coupled to electrospray ionization	Hybridization of labeled DNA on a solid support (chip) where the interesting genes, including those from serotyping are printed	Full genome sequencing (2nd generation sequencing)
Avantages	- Gold standard - Covers all serotypes - Validated and available method at LSPQ	- Fast - Inexpensive - Easily achievable - Equipment available at the LSPQ - Used in several laboratories across the world (USA, Spain, Finland, Brazil, Korea)	 Fast Inexpensive Easily achievable No need to adapt the local epidemiology Detection of new serotypes Equipment available at the LSPQ 	 Partially automated Determines usefulST's (sequence type) for epidemiological studies Methodology usable for other applications 	- No need to adapt the protocol to local epidemiology - Reader microarray available at LSPQ	 Large amount of data generated Identification of genes resistance and virulence Identification of therapeutic targets Equipment available at the LSPQ.
Disadvantages	- Tedious - Laborious - Subjective - Expensive - Possibility of cross-reactions	 To be customized according to local epidemiology Detection of known serotypes Possibility of false + Some serotypes are difficult to identify (eg. 6A, 6B, 6C, 6D) 	 Method based on public databases (eg NCBI) that are not always accurate Necessity of a cpsB controlled bank 	 Unavailable device at the LSPQ Plex-ID is not available on the market: adjustments are in process at Abbott 	- Detection of known serotypesonly	 Method not suitable for serotyping in a monitoring program setting
Efficiency	Serotype : 100 %	Sérotype : 93 - 99 %	Serotype : 66 % Serogroup : 20 % more Ambiguous results : 14 %	Not available	Serotype: 75% Serogroup: 9%more No result: 11% Error: 5%	Not available
Time required	96 hours	~72 hours	~72 hours	Not available	~72 hours	1 week
Costs / strain	Between 60 \$ et 100 \$ according to serotype	Between 30\$et 80\$according to multiplexdesign	50\$	Not available	160\$	120\$
References *	Austrian, 1976 ⁽⁴⁾	- Site web du CDC ⁽⁵⁾ - Pai et al., 2006 ⁽⁸⁾ - Iraurguiet al., 2010 ⁽⁷⁾ - Yunet al., 2011 ⁽⁸⁾ - Siiraet al., 2012 ⁽⁸⁾	- Leung et al., 2012 ^(c)	- Massire et al., 2012 ⁽¹¹⁾ - Wolk et al., 2012 ⁽¹²⁾	- Wangetal., 2007 ⁽¹³⁾ - Tomita et al., 2011 ⁽¹⁴⁾ - Gervaixet al., 2012 ⁽¹⁵⁾ - Raymond et al, 2013 ⁽¹⁴⁾	- Fani et al., 2011 ⁽²⁷⁾ - Billalet al., 2011 ⁽²⁸⁾ - Hu et al., 2012 ⁽²⁹⁾ - Croucher et al., 2013 ⁽²⁰⁾

Annexe 1. Time Frame/Project Goals (arrows), milestones (red), task (blue bars) and timelines.

TASK (Location)	YEAR 1	YEAR 2
Development of comprehensive tools for rapid detection and efficient monitoring of <i>S. pneumoniae</i> .		
PCR multiplex		
Sequetyping		
WGS (10 strains)		
Proof of concept (comparison with gold standard method; Quellung) using 100 representative strains.		←
PCR multiplex		•
Sequetyping		
WGS (10 strains)		
Publication/conference		_

STUDY DOCUMENT REQUIREMENTS FORM

STUDY INFORMATION		
PRINCIPAL INVESTIGATOR	Dr. Brigitte Le	febvre
PFIZER INSPIIRE NO.	WI203144	INSTITUTIONAL REFERENCE NUMBER
PROTOCOL TITLE	Serotype monit population in the second s	oring of S. pneumoniae invasive strains in adult 1e province of Quebec_ a 3 years study evaluation.
DOCUMENTATION REQ	UIREMENTS	
MATERIALS ENCLOSED W	TH THIS PACKET: (D	ELETE ANY ITEMS BELOW THAT DO NOT APPLY)
Site Information S Drug Supply Requ Reportable Event Pfizer Safety Repo Pfizer IIR Adverse Exposure During F Product informati IRS Web site addr PRINCIPAL INVESTIGATOF	neet (agreement in est Form Fax Cover Sheet orting Reference Mar Event Report Form a Pregnancy (EDP) Supp on (document or refe ess to download For R MUST PROVIDE TO	nual for IIR studies and IIR Adverse Event Report Form Completion Instructions blemental Form erence) m W-9 (US/Puerto Rico only) PFIZER: (ONLY BOXES CHECKED BELOW)
Documents required to ge	enerate an IIR Agree	ment
Completed (agree	ement information	form)
Completed IRS Fo	<i>rm W-9</i> (US/Puerto F	Rico only for payee entity)
Documents required to be	submitted prior to	receiving monetary support and/or drug supplies
 Completed Site In Executed IIR agree Final study protoco protocol as requir IRB/IEC approval I Regulatory respor For US studies: FDA IND resp DEA number 	formation Sheet (Dro ement col (for a study with s red for qualified pers etters (initial approv nse onse (IND number of for controlled substa	ug Supply Information and/or Financial Information Tab[s]) ites in the EU, the principal investigator must sign the final study on [QP] release of drug supplies) al and annual renewals, as applicable) r exemption – may not apply to all consumer products) nces
For EU studies: Approved clir Submission le For non-US, non-E	nical trial application etter for the CTA EU studies: Regulatory review/ap	(CTA) in English (as required for QP release) oproval based upon local country requirements

Site Information Sheet / agreement information form)

The information requested on the *Site Information Sheet* /*Agreement information form* is critical to Pfizer in order to develop an agreement, to reduce the agreement's review time, and to ensure that monetary support is sent to the appropriate payee or drug supply is sent to the appropriate address. Withholding or delaying Pfizer's receipt of this form will significantly delay the contracting process for the approved research.

Final Protocol and Amendments

Pfizer will not provide support to an IIR study until after receipt of the final study protocol. If the research described in the final protocol is materially different from that in the approved proposal, then Pfizer may choose to modify or withhold its support.

As indicated in the agreement, the principal investigator must also promptly provide Pfizer with any amendments to the Pfizerapproved final study protocol. Continuation of support by Pfizer for an IIR study will be contingent on Pfizer's review and acceptance of these changes.

For studies with sites in the EU where drug support is being requested, the final study protocol must be signed by the principal investigator and is required for QP release of drug supplies.

Institutional Review Board (IRB)/Independent Ethics Committee (IEC) Documents

For studies that require IRB/IEC approval, Pfizer will only provide support for an IIR study after receipt of a copy of the IRB/IEC approval letter.

Continuation of support by Pfizer requires timely submission of a copy of IRB/IEC renewal documentation subsequent to the original IRB/IEC approval (as required per local regulations).

Regulatory Response

<u>US Clinical Studies: FDA IND Response or IND Exemption Documentation.</u> For an interventional clinical study involving a Pfizer drug, an investigational new drug (IND) application may need to be filed with the U.S. Food and Drug Administration (FDA). Please review IND requirements under 21 CFR 312 (available at http://www.fda.gov) to determine whether an IND is required.

For this type of study, Pfizer will not provide any IIR support until after receipt of documentation that an IND has been filed or that the study is exempt from an IND filing under 21 CFR 312.2(b)(1).

European Union Clinical Studies. For studies for which conduct under a clinical trial application (CTA) is required, Pfizer will not provide any IIR support until after receipt of a copy of the submission letter to the CTA, in English.

If Pfizer will provide packaged and labeled Pfizer product, then Pfizer must receive a copy of the approved CTA, with Section 4.2 (IMPD or Letter of Access from Pfizer) and Section D (in its entirety) must be translated in English, before Pfizer can provide QP release of product. For more information regarding CTAs, please consult http://eudract.emea.europa.eu/document.html.

Should your local regulatory authority require documentation from Pfizer, please contact your IIR manager for assistance.

<u>Non-US/Non-EU Studies</u>. Should your local regulatory authority require documentation from Pfizer, please contact your IIR manager for assistance.

Investigator-Initiated Research Agreement

Pfizer will provide the principal investigator or the contracting office with an IIR agreement that documents the terms under which Pfizer will provide the research grant. Development of the agreement is based upon information you have supplied on the enclosed forms.

Drug Supply Request Form

STUDY DOCUMENT REQUIREMENTS FORM

If Pfizer has agreed to supply drug, then the *Drug Supply Request Form* can be used to communicate your clinical supply needs throughout the course of the IIR study. Pfizer will not ship any clinical supplies until all required documents have been received and an IIR agreement has been executed.

<u>NOTE</u>: Availability of drug may take between eight weeks and twelve months, depending upon the product and its packaging and labeling requirements. Contact the appropriate IIR manager to determine available quantities of drug and timelines for shipment.

<u>For Oncology Studies Conducted in the United States.</u> If Pfizer is not providing clinical supplies for this study, then Pfizer cannot be held responsible for drug cost reimbursement. For assistance with third-party reimbursement procedures and indigent patients, contact FirstRESOURCE, Pfizer Oncology's Reimbursement and Patient Assistance Program, at 877-744-5675 prior to initiating therapy.

IRS Form W-9

Pfizer requires that all grant recipients based in the U.S. or Puerto Rico who receive monetary support complete and submit IRS *Form W-9*. This form shall be completed for the entity which will be receiving the grant payment(s). Please verify with your grants office that the name of the payee is correct and that it is the legal entity name related to the tax identification number. The latest version of *Form W-9* may be downloaded from the IRS Web site from: http://www.irs.gov/pub/irs-pdf/fw9.pdf.

Product Information

Pfizer is required to provide relevant and current scientific information about the investigational product to the investigator. This may be accomplished by supplying one of the following Pfizer-approved documents to the investigator: Investigator Brochure (IB), package insert (PI), or local product document (LPD).

Safety Reporting

<u>Safety Reporting Reference Manual for IIR Studies with Pfizer Products.</u> Detailed information regarding a principal investigator's (or investigators') adverse event reporting responsibilities for a Pfizer-supported IIR study can be found in the accompanying training manual. **Please read through this document carefully. Principal investigators must understand and fully comply with the adverse event reporting requirements of their studies.**

NOTE: Reporting an adverse event to Pfizer does not relieve the institution of its responsibility to report the event to the FDA or to the local regulatory authorities that govern that institution.

<u>IIR SAE Form and IIR SAE Report Form Completion Instructions.</u> For those studies where the principal investigator is required to submit reportable events (AEs and SAEs) to Pfizer, the investigator may use the *Pfizer IIR SAE/Adverse Event Report Form* to submit the event. Instructions for completion will also be provided.

<u>Reportable Event Fax Cover Sheet.</u> For those studies where the principal investigator is required to report adverse events and other reportable events to Pfizer, the investigator must use the attached *Reportable Event Fax Cover Sheet* along with the Pfizer-approved *Adverse Event Report Form*.

August 19, 2015

Dr. Brigitte Lefebvre Laboratoire de Sante Publique du Québec 20045 chemin Ste-Marie Sainte-Anne-de-Bellevue, Québec H9X 3R5

Email: brigitte.lefebvre@inspq.qc.ca Re: Pfizer reference # WI203144

Dear Dr. Lefebvre,

The Vaccines Team IIR Grant Review Committee has reviewed your proposal titled "Serotype monitoring of S. pneumoniae invasive strains in adult population in the province of Quebec_ a 3 years study evaluation." and is pleased to inform you that Pfizer is interested in supporting your research with funding.

The total amount of funding you requested is \$707,080.00. The actual amount of funding will be agreed upon and reflected in the Investigator-Initiated Research Agreement.

Please complete and return the accompanying **Agreement Information Form** to begin the contracting process. For those studies being conducted in the United States and Puerto Rico where funding is provided, a completed IRS Form W-9 is required.

Pfizer support is contingent upon the receipt of:

- Final research protocol*
- IIR Agreement executed between Pfizer and your institution
- IRB/IEC approval (as appropriate)
- Regulatory response (see enclosed guidelines)

*Please be aware that if the research described in your final protocol is materially different from that presented in your original proposal, then Pfizer reserves the right to reconsider its support.

If you have not obtained IRB approval and/or executed the IIR Agreement with Pfizer within six (6) months from the date of this letter, then funding for your grant cannot be guaranteed. Although this letter signifies Pfizer's intention to support your proposal, Pfizer is not committed until an agreement has been fully executed.

Pfizer recognizes that carefully conducted clinical trials are the fastest and safest way to find treatments to improve health. As such, Pfizer encourages you and your institution to add this study to the FDA's www.clinicaltrials.gov database. Pfizer recognizes that the availability of clinical trial listings and results are critical to the communication of important new information for the medical profession, patients, and the public.

If you have questions, please contact me and **Research Specialist (RMRS)**

or the Regional Medical

We look forward to working with you.

Yours sincerely,

IIR Grant Specialist Medical Quality & Effectiveness

Serotype monitoring of *S. pneumoniae* invasive strains in adult population in the province of Quebec: a 3 years study evaluation

Principal Investigator

Brigitte Lefebvre, Ph. D. Microbiologist, Laboratoire de santé publique du Québec

Co-Pl

Cécile Tremblay, MD, Pfizer/University of Montreal Chair on HIV Translational Research, University of Montreal.

Director, Laboratoire de santé publique du Québec

Background

Streptococcus pneumoniae is responsible for various infections such as pneumonia, otitis, sinusitis, peritonitis, endocarditis and meningitis⁽¹⁾. The incidence of invasive *S. pneumoniae* is often used as an indicator of the burden of pneumococcal disease. Virulence and invasiveness varies among serotypes. In *S. pneumoniae*, several virulence factors are known; among these, the *cps* locus encoded capsule is a crucial one, as the prime target for vaccine development. Although several vaccines (PCV-7, PCV-10, PCV-13 and PCV-23) with different coverage have been developed against *S. pneumoniae*, invasive pneumococcal disease remains a public health concern as vaccine replacement phenomenon has been observed⁽²⁾.

In December 2004, PCV-7 vaccination was implemented free to all newborns in Quebec, using a 3-dose schedule (2, 4 and 12 months). Simultaneously, the vaccine could be offered free of charge to all children under the age of 5, during routine visits. In 2008, a new PCV-10 containing 3 serotypes not included in PCV-7 vaccine was licensed in Canada. It was introduced in Quebec in children in the summer of 2009. In 2009, PCV-13 vaccine was approved in Canada. It was introduced in the Quebec immunization program in January 2011 and replaced PCV-10.

The introduction of PCV-7 had not only an important impact on the number and the diversity of strains isolated from children under 5 years of age, but the impact was also observed in individuals \geq 5 year old. Thus, the proportion of serotypes included in PCV-7 has dramatically declined since 2005. However, there was an increase in the proportion of serotypes 7F and 19A which are not included in PCV-7 and an increase of non-vaccine serotypes was observed. In 2013, a decrease in the frequency of 7F and 19A serotypes in individuals \geq 5 year old was observed. However, the number of circulating serotypes not included in the PCV-7, PCV-10 and PCV-13 is increasing.

Thus, sustained laboratory monitoring is essential because it allows the study of evolution of circulating serotypes as well as antibiotic resistance patterns, two crucial parameters for planning immunization programs, the choice of vaccines and the development of treatment guidelines. Analysis of invasive strains allows for the study of serotypes distribution and antibiotic susceptibility patterns of strains responsible for the most severe forms of pneumococcal disease. Monitoring of circulating serotypes is essential to assess the impact of vaccination programs of the province of Quebec.

In 1996, the Public Health Laboratory of Quebec (LSPQ) in collaboration with hospital laboratories established a laboratory surveillance program of *S. pneumoniae* invasive strains. The program's objectives were to study the serotype distribution circulating in Quebec and establish their antibiotic susceptibility profiles. This program was based on the collection of strains from sentinel laboratories. In 2005, in order to assess the impact of the universal immunization program against *S. pneumoniae* in

1

children, the program was expanded to all invasive strains of *S. pneumoniae* isolated from children under 5 years of age.

This monitoring program has kept track of the evolution, in Quebec children, of various serotypes and resistance in connection with the introduction of the PCV-13 vaccine in 2011 and more specifically allows for the measure of its impact on the prevalence of serotypes 7F and 19A, two serotypes highly prevalent in Quebec. Currently, the provincial surveillance program is limited to strains collected in children less than 5 years of age and to adult strains from sentinel laboratories which represent less than 25% of the total invasive strains in the adult population. Therefore, we may be underestimating the diversity of circulating strains especially in areas not represented in the sentinel program and may not capture adequately seasonal variation. Two years ago, we proposed, a study evaluating the benefits of acquiring data on all invasive strains isolated in patients (\geq 5 years old) of the province of Quebec compared to sentinel sites. This study was launched in August 2013, with the financial support of Pfizer. Preliminary data from the first 18 months of extended surveillance indicate that some emerging serotypes may not be fully captured by the sentinel sites, although these observations need to be evaluated by longer follow-up.

Preliminary data from surveillance of invasive *S. pneumoniαe* in individuals ≥ 5 years old

After 18 months of extended surveillance, we have identified a higher proportion of two serotypes, the 6A and 15A, which had not previously been identified with the sentinel sites surveillance program. Serotype 6A is included in the currently used PCV-13 vaccine and serotype 15A is not included in this vaccine and exhibits multi-resistance. A recent paper from Israels howed a similar increase of 15A serotype among adult invasive pneumococcal disease⁽²⁾. Emergence of serogroup 15 was also described by Liyanapathirana *et al.*⁽³⁾ in nasopharyngeal carriage of hospitalized children. Furthermore, our data analysis revealed an overrepresentation of some serotypes when only sentinel data are analyzed. The clinical significance of these serotypes is not yet defined. However, this supports the necessity to expand our broadened monitoring over a longer period of time to evaluate the establishment of these serotypes into Quebec's ecology and their relevance for vaccine development.

Before the beginning of our study in 2013, reporting of data was available in 3 formats: i) The annual provincial aggregated data generally available one year after data collection⁽⁴⁾; ii) The monthly LSPQ StatLabo report providing aggregated data with a 2 months delay⁽⁵⁾ iii) Individual reports for each strain sent to participating laboratories as well as public health stakeholders, up to 4 months after strain reception. As part of the current study, we were able to make available in real time information on circulating serotypes by publishing a monthly report including all serotypes identified, classified by age groups in the bulletin StatLabo (Fig. 1.).

We propose to continue our study for another three years to allow for a full characterization of circulating serotypes including clustering in certain geographical areas or seasonal variation, to establish incidence of invasive pneumococcal disease in the Quebec population, and to define if this surveillance program provides added value to a sentinel site based approach. Results of this research project could help guide public health authorities in immunization strategies and will also provide useful information for vaccine design.

Figure 1. Données mensuelles des souche	s invasives de <i>S. pneumoniae</i> chez les patients
de 5 ans et plus ⁽⁶⁾ .	

	Continent	Continent	Conturné	Polysac-	2014	9					201	5		
Sérotype	7-valent	10-valent	13-valent	23-valent	Jul	Aoû	Sep	Oct	Nov	Déc	Jan	Fév Mar	Avr Ma	i Jun
4	x	x	X	x	1	0	0	0	0	0	2			1000 C
6B 9V	x	X	X	x	0	0	0 0	0	0 0	0	0			
14	X	X	X	X	0	1	1	1	0	1	1			
18C 19F	x	x	X	x	0	0	0	0	1	0	1			
23F	X	x	X	X	1	0	0	0	0	0	0			
5		x	x	X	ō	ŏ	0	ō	õ	ō	ō			
7F 3		x	X	X	5	1	1 6	8	3	8	15			
6A			X		0	0	0	0	1	1	0			
2			~	x	ō	0	ō	0	0	0	0			
B				X	0 2	1	0	1	2 2	3	0 4			
10A				X	1	1	0	0	1	4	1			
11A 12F				X	2	1	1	4	1	4 4	0 0			
15B				X	1	0	0	3	1	1	6			
20				x	0	0	0	1	2	ō	õ			
22F 33F				X	2	3	3	3	9	9	16			
							1		1.00					
6C 6D					0	0	0	2	0	3	0			
7A 7B					0	0	0	0	0	0	0			
70					1	1	1	0	0	1	0			
9A 9L					0	0	0	0	0	0	0			
10B					0	0	0	0	0	0	0			
10C 10F					0	0	0	0	0	0	0			
11B					0	0	0	0	0	0	0			
11D					0	0	o	ō	ō	0	o			
11F 12A					0	0	0	0	0	0	0			
12B					0	0	0	0	0	0	0			
13 15A					0	0	2	4	5	10	3			
150					0	0	0	0	1	0	0			
16A					ō	o	0	ō	0	0	0			
16F 17A					2	1	3	5	2	4	0			
18A					0	0	0	0	0	0	0			
185					0	0	0	0	0	0	0			
19B					0	0	0	0	0	0	0			
21					ō	0	ō	õ	ō	0	0			
22A 23A					2	0	0	0	0	3	0 2			
23B					2	0	2	1	2	2	3			
24B					0	0	0	0	0	0	0			
24E					0	1	0	0	0	1	1			
25F					ő	0	0	0	0	0	0			
27					0	0	0	0	0	0	0			
28F					0	0	0	0	0	0	0			
29					0	0	1	0	0	0	0			
32A					0	0	ō	ō	0	ō	ō			
32F 33A					0	0	0	0	0	0	0			
3.3B					0	0	0	0	0	0	0			
33C 33D					0	0	0	0	0	0	0			
34					0	0	0	1	0	3	1			
35A 35B					0	0	0	0	1	0	0			
3.5C					0	0	0	0	0	0	0			
36					0	0	0	0	0	0	0			
37					0	0	0	0	0	0	0			
39					0	0	0	Ó	ō	0	0			
40					0	0	0	0	0	0	0			
41F					0	0	0	0	0	0	0			
42					0	0	0	0	0	0	0			
44					ō	o	o	0	0	0	0			
45					0	0	0	0	0	0	0			
47A					0	0	0	0	0	0	0			
48					0	0	0	0	0	0	0			
Non sératamahla					0	0	0	0	0	0	0			
ATTACK AND					v		0	~	~	2	v			

Project objectives

- 1- To characterize serotypes and antibiotic resistance profile of all invasive *S. pneumoniae* strains from the adult population in Quebec.
- 2- To assess whether the serotype profile differ from the entire population compared to the profile obtained from sentinel sites.
- 3- To follow the incidence of IPD in Quebec over several years and evaluate the impact of current vaccine, PCV-13 on IPD incidence.

Methodology

The research project will cover the complete adult population for 3 additional years (September 2015 to August 2018). We expect to collect 550 additional strains yearly to reach an average of 1000 strains yearly (estimated based on 2014 data). This will represent all the invasive *S. pneumoniae* strains of the province of Quebec. We propose to conduct this extended program for a 3-year period, after which a program evaluation will be performed. Serotyping using Quellung methodology and determination of susceptibility profiles using microdilutions method will be performed on all *S. pneumoniae* invasive strains collected in patients aged of \geq 5 year old.

Those additional strains will be provided by non-sentinel hospitals (n=74) which, until now, only provided LSPQ with strains from child <5 years old and strains resistant to penicillin ($\geq 0.12 \text{ mg/L}$ according meningitis criteria).

Data will be published monthly through StatLabo including serotype stratified according to patients' age and months.

Steps	Lenght
Monitoring of invasive <i>S. pneumoniae</i> serotypes in patients aged \geq 5 years old.	Years 1, 2 and 3
Real-time updating of StatLabo surveillance information using Quellung method.	Years 1, 2 and 3
Conferences.	Years 1, 2 and 3
Publication.	Year 3

Time-line

Timeframe

See annexe 1

Project Benefits

- 1- Real-time monitoring of invasive *S. pneumoniae* serotypes and antibiotic resistance in adult in the province of Quebec.
- 2- Monitoring of IPD incidence in Quebec.
- 3- Comparison of actual provincial surveillance program using data from sentinel hospitals vs data from the study for individuals aged of \geq 5 years old.
- 4- Data available for public health orientation on immunization program in adult population.

Deliverables

- 1- Monitoring of invasive *S. pneumoniae* strains in adult population for 3 years, starting in Septembre 2015 and ending in August 2018.
- 2- Monthly reporting of serotypes in StatLabo.
- 3- Data from the study will be presented at scientific meetings (AMMIQ [at the end of year 1], CACMID [at the end of year 2], ISPPD[at the end of year 3]) and published in a peer reviewed journal (Vaccine/PlosOne) at the end of the study.

References

- 1- Spellerberg, B. and Brandt C. *Streptococcus*. 2011. Manual of clinical microbiology. 10th edition. American Society for microbiology, Washington, D.C.
- 2- Regev-Yochay G, Paran Y, Bishara J, Oren I, Chowers M, Tziba Y, Istomin V, Weinberger M, Miron D, Temper V, Rahav G, Dagan R; IAIPD group. 2015. Early impact of PCV7/PCV13 sequential introduction to the national pediatric immunization plan, on adult invasive pneumococcal disease: A nationwide surveillance study. Vaccine. 25;33(9):1135-42.
- 3- Liyanapathirana, V., EA. Nelson, I. Ang, R. Subramanian, H. Ma, M. Ip. 2015. Emergence of serogroup 15 *Streptococcus pneumoniae* of diverse genetic backgrounds following the introduction of pneumococcal conjugate vaccines in Hong Kong. Diagn Microbiol Infect Dis. Jan;81(1):66-70.
- 4- Lefebvre B., C. L. Tremblay. 2012. Programme de surveillance du pneumocoque. Rapport 2011. INSPQ. ISBN : 978-2-550-66364-5.
- 5- Bulletin STATLABO. Institut national de santé publique du Québec (INSPQ), Laboratoire de santé publique du Québec (LSPQ). Statistiques d'analyses du LSPQ. 2012. Vol. 11, no.11.
- 6- Bulletin STATLABO. Institut national de santé publique du Québec (INSPQ), Laboratoire de santé publique du Québec (LSPQ). Statistiques d'analyses du LSPQ.2015 Vol. 14, no. 2.

Findl 2015/09/18

YEAR 3 YEAR 2 YEAR 1 Database updating with serotypes in relationship with age (StatLabo_{se}) tattlabo_{se}) to the impact of extended surveillance to adults in the design of vaccines at the end of year 1, 2 and 3. Continuous and real time updating of StatLabo surveillance information. Surveillance of S. pneumoniae serotyping using Quellung method.

Conferences Publication

• •

Annexe 1. Time Frame/Project Goals (arrows), milestones (red), task (blue bars) and timelines.

New molecular tools for the serotyping of *Streptococcus pneumoniae* invasive strains in the province of Quebec

Principal investigator, Project leader

Brigitte Lefebvre, Ph.D., Microbiologist, LSPQ

Co-Principal investigator

Cécile Tremblay, MD, FRCPC, Département de Microbiologie, immunologie et Infectiologie Université de Montréal

Co-Investigators

Simon Lévesque, Ph.D., Microbiologist, LSPQ

Sadjia Bekal, Ph.D., Microbiologist, LSPQ

Marc-Christian Domingo, Ph.D., Microbiologist, LSPQ

Technical and bioinformatics leader

Eric Fournier, D.E.S.S. in bioinformatics, M. Sc., Bioinformatics Scientist, LSPQ

Scientific coordinator

Florence Doualla-Bell, Ph.D., LSPQ

Scientific director

Jean Longtin, MD, LSPQ

Authors of the report

Eric Fournier, D.E.S.S. in bioinformatics, M. Sc., Bioinformatics Scientist, LSPQ

Brigitte Lefebvre, Ph.D., Microbiologist, LSPQ

Introduction

Since 1990, *Streptococcus pneumoniae* serotypes are determined using the Quellung's technique in most laboratories. This standard method uses antisera to reveal the swelling of the capsule through an antibody-antigen reaction. This technique is laborious, expensive and requires technical expertise. Although it is recognized as the reference method, it can lead to erroneous results because it is subjective. Indeed, serotyping results are determined through microscope observation of capsular swelling which in some cases is difficult to observe. As more than 90 serotypes of *S. pneumoniae* have been described to date, a serotyping algorithm must be applied using different antisera which makes the task tedious and time consuming.

In that context, we evaluated three molecular techniques for the rapid serotyping of *S. pneumoniae* invasive strains from children and adults in the province of Quebec. The results were compared with those obtained using Quellung gold standard.

Whole genome sequencing (WGS) is a technology that determines the complete DNA sequence of a microorganism's genome at a single time. Sequetyping is based on polymerase chain reaction (PCR) amplification of *cpsB* (capsular polysaccharide synthesis) using a single primer pair followed by nucleotide sequencing. Sequential multiplex PCR was used for capsular serotyping of pneumococci using various primers pairs. Primer selection and their arrangement for multiplexing were optimized based on the capsular serotype distribution found in Quebec.

Materials and Methods

Bacterial isolates

The 97 *S. pneumoniae* isolates used in this study are listed in Table 1. They cover 74 different serotypes previously identified by the Quellung reaction using Statens Serum Institut antisera. Purified genomic extracts were obtained using the Qiagen[™] BioRobot M48 workstation and the MagAttract DNA Mini M48 Kit (Qiagen).

Whole Genome Sequencing (WGS)

Genomic extracts were quantified using the Quant-It[™] PicoGreen[®] dsDNA Assay Kit (Life Technologies) and diluted to the working concentration (1 ng/µl) to initiate the library preparation.

Whole genome sequencing was performed on 21 pneumococci isolates (Table 1) using an Illumina MiSeq system and the Nextera XT DNA reagent kit v3 (600 cycles, paired ends). Genome size of *S. pneumoniae* is 2.16 Mbp on average. Using this value and the MiSeq Sequencing Coverage Calculator (<u>http://support.illumina.com/downloads/sequencing coverage calculator.html</u>), a minimum depth of coverage per isolate averaging 50X was obtained.

Bioinformatics tools

Following the MiSeq run, reads quality was evaluated with FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Genome assemblies were performed using Spades (Bankevich *et al.*, 2012) assembler on Calcul Quebec (http://www.calculquebec.ca/en/) public resources. Assemblies' metrics for each specimen were computed and visualized with Quast (Gurevich *et al.*, 2013) and R scripts tools.

To detect the *cps* loci in each single fasta file assembly, 107 *cps* sequences representing 92 different serotypes (Camargo *et al.*, 2015) were downloaded from the NCBI GenBank database (<u>http://www.ncbi.nlm.nih.gov/</u>) using an in-house Biopython (http://biopython.org/wiki/Main_Page) script tool. A database containing those sequences was constructed and used as a list of subjects to successively Blast (Basic Local Alignment Search Tool) all assembly files with a second in-house python script tool. For each unknown isolate, the hit with the highest bit score was retained as the most probable corresponding serotype.

Sequential multiplex PCR

Pneumococcal serotypes of selected isolates (n=60) listed in Table 1 were tested using a sequential multiplex PCR protocol designed by the Centers for Disease Control and Prevention (CDC, http://www.cdc.gov). The list of 41 oligonucleotide pairs of primers and the product sizes are accessible at: http://www.cdc.gov/streplab/downloads/pcr-oligonucleotide-primers.pdf. The names of the primers correspond to their respective target serotype(s). The sequential multiplex approach consists of eight successive PCR reactions (reactions 1 to 8) and the reaction 6C used to resolve a positive amplification with primers 6A/6B/6C/6D in reaction 1. Each single reaction has its serotype-specific set of primers. They all have the universal capsular pair of primers CPSA-(forward and reverse) as positive control targeting every possible tested *cps* locus (except for serotype 38). Master mix component and thermal cycling parameters are detailed in the following document: http://www.cdc.gov/streplab/downloads/pcr-us-clinical-specimens.pdf. Electrophoresis was done using a 2% agarose gel and 25 µl reaction mix described in the conventional LSPQ routine procedure.

Sequetyping

Serotyping by sequetyping, based on the *cpsB* gene sequencing, was performed on selected isolates from Table 1 (n=74) according to Leung *et al.*, (2012). The sequetyping primers are as follow: *cps1*, 5'-GCA ATG CCA GAC AGT AAC CTC TAT-3', and *cps2*, 5'-CCT GCC TGC AAG TCT TGA TT-3'. PCR amplification, amplicon purification, the first generation sequencing with the BigDye Sequence Terminator v.3.1 kit (Applied Biosystems) and the Genetic Analyser *3130* (Applied Biosystems) were performed according to the procedure commonly used in routine at the LSPQ.

BioNumerics version 7.5 (Applied Maths) was used to assemble forward and reverse abi sequences and to edit final consensus chromatograms. Consensus sequences were exported in a single multifasta file to perform phylogenetic analysis and Blast queries (see below).

The identification could be classified into one of the following levels (adapted from Leung *et al.*, 2012): 1) Serotype level when the expected serotype was found with the highest identity value. 2) Serogroup level if the expected serotype was found with the highest identity value and this identity was shared with other serotype(s) of the same serogroup only. 3) Ambiguous, when condition 2) is true and the highest identity value is also or only shared with other serotypes. 4) Misidentified, when the highest identity value was obtained with a serotype different from the expected one.

		Tested serotyping methods					
Serotypes ⁽¹⁾	Isolates ID	WGS	Sequetyping	Sequential multiplex PCR			
			,	, ,			
1	LSPQ3053		V	\checkmark			
2	LSPQ3054		\checkmark	\checkmark			
3	LSPQ3055		√	\checkmark			
4	LSPQ3124		\checkmark	\checkmark			
5	LSPQ3057		\checkmark	\checkmark			
6A	LSPQ3058		\checkmark	\checkmark			
6B	LSPQ3770		\checkmark	\checkmark			
6C	LSPQ4242		\checkmark	\checkmark			
6D	MA092686		\checkmark	\checkmark			
7A	LSPQ4102		\checkmark	\checkmark			
7B	LSPQ4103		\checkmark	\checkmark			
7C	LSPQ4231		\checkmark	\checkmark			
7F	MA099461		\checkmark	\checkmark			
7F	KMA081946	\checkmark					
8	LSPQ3596		\checkmark	\checkmark			
9A	MA080418		\checkmark	\checkmark			
9N	MA099463		\checkmark	\checkmark			
9V	MA099234		\checkmark	\checkmark			
10A	MA090174		\checkmark	\checkmark			
10A	KMA095845	\checkmark					
10A	KMA094933	\checkmark					
10A	KMA094205	\checkmark					
10B	MA080812		\checkmark				
10F	MA075627		\checkmark	\checkmark			
11A	MA090298		\checkmark	\checkmark			
11A	KMA091851	\checkmark					
11B	MA097930		\checkmark				
11F	MA073130		\checkmark				
12A	MA097699		\checkmark	\checkmark			
12F	LSPQ3064		\checkmark	\checkmark			
13	LSPQ3065		\checkmark	\checkmark			
14	LSPQ3066		\checkmark	\checkmark			
15A	MA099389		\checkmark	\checkmark			

TABLE 1 Serotypes and isolates ID used in this study and selected isolates for the seroptyping molecular methods tested.

		Tested serotyping methods					
Serotypes ⁽¹⁾	Isolates ID	WGS	Sequetyping	Sequential multiplex PCR			
15A	KMA096792-1	\checkmark					
15A	KMA095336	\checkmark					
15A	KMA094663	\checkmark					
15A	KMA093977	\checkmark					
15B	MA099177		\checkmark	\checkmark			
15B	KMA096033	\checkmark					
15B	KMA095997	\checkmark					
15B	KMA094560	\checkmark					
15C	MA096496		\checkmark	\checkmark			
15F	MA083248		\checkmark	\checkmark			
16A	MA065427		\checkmark				
16F	LSPQ4236		\checkmark	\checkmark			
16F	KMA093020	\checkmark					
17F	MA098807		\checkmark	\checkmark			
18A	LSPQ4243		\checkmark	\checkmark			
18B	MA066814		\checkmark	\checkmark			
18C	MA095139		\checkmark	\checkmark			
19A	LSPQ3071		\checkmark	\checkmark			
19A	KMA080288	\checkmark					
19A	KMA080125	\checkmark					
19A	KMA079789	\checkmark					
19B	MA083042		\checkmark				
19C	MA084138		\checkmark				
19F	MA098992		\checkmark	\checkmark			
20	LSPQ3072		\checkmark	\checkmark			
21	LSPQ3160		\checkmark	\checkmark			
22A	MA095877		\checkmark	\checkmark			
22F	LSPQ4162		\checkmark	\checkmark			
22F	KMA096962	\checkmark					
22F	KMA094696	\checkmark					
22F	MA094689	\checkmark					
23A	LSPQ3769		\checkmark	\checkmark			
23B	MA099469		\checkmark	\checkmark			
23F	MA099467		\checkmark	\checkmark			

TABLE 1 (continued)

		Tested serotyping methods						
Serotypes ⁽¹⁾	Isolates ID	WGS	Sequetyping	Sequential multiplex PCR				
24 ⁽²⁾	MA096695	\checkmark						
2/B	MA09/350		\checkmark	\checkmark				
24D 24F	MA094330		\checkmark	\checkmark				
27	MA099020		\checkmark					
284	MA095690		\checkmark					
204			\checkmark					
29	KMA099083		\checkmark					
31	I SPO3080		\checkmark	\checkmark				
32F	LSP Q3081		\checkmark					
320	MA086628		\checkmark	\checkmark				
33F	MA099238		\checkmark	\checkmark				
34	ISP03127		\checkmark	\checkmark				
34	KMA099037			\checkmark				
34	KMA096961	\checkmark						
35A	MA092229		\checkmark	\checkmark				
35A	KMA082642			\checkmark				
35B	MA097723		\checkmark	\checkmark				
35F	MA099195		\checkmark	\checkmark				
36	LSPQ3641		\checkmark					
37	LSPQ3645		\checkmark	\checkmark				
38	LSPQ3642		\checkmark	\checkmark				
39	LSPQ3646		\checkmark	\checkmark				
40	LSPQ3162		\checkmark	\checkmark				
41A	LSPQ3089		\checkmark					
42	LSPQ3677		\checkmark	\checkmark				
43	LSPQ3643		\checkmark					
44	LSPQ3644		\checkmark	\checkmark				
45	LSPQ3092		\checkmark					
46	LSPQ3093		\checkmark	\checkmark				
48	LSPQ3095		\checkmark					

TABLE 1 (continued)

⁽¹⁾ Serotype determined by Quellung.

⁽²⁾ Serotype to be determined, unusual cross reaction (24c-, 24d+, 24e+) with Quellung.

Results

Evaluation of the Whole Genome Sequencing approach

WGS is a powerful method which generates huge amount of data. Bioinformatics tools are essential to extract the information. First, following a MiSeq run, generated reads must be submitted to some statistics measurements such as their average lengths and quality. Second, they have to be assembled in order to construct higher levels of DNA sequences (contigs). A fully closed genome with a single contig is usually not expected due to the short length of the reads. Nonetheless, contigs with high depth of coverage and long enough are expected so that their concatenated lengths cover the totality of the target genome. Resulting assemblies hold a lot of garbage data which are not always required. To identify genes or regions of interest, genome annotation is a strategy which is often used. However, simple Blast analyses have also proven very efficient and are sometimes sufficient to obtain reliable responses. Following are the results for each main step of our analysis pipeline to identify serotypes of pneumococcal isolates with the WGS approach.

Paired end reads quality

FastQC is а simple tool used to summarize statistics of reads in Fastq (https://en.wikipedia.org/wiki/FASTQ format) format files. Figures 1 to 3 give an example of a partial FastQC report generated with this tool on the KMA080125 forward reads file. Results are visually very easy to interpret. Other metrics are also generated by the program. For example, per sequence GC content, Kmer content, overrepresented sequences (data not shown) but their values don't usually have any impact on the rest of the pipeline steps. The focus is normally directed only on the reads quality score and their average length.

In the KMA080125 example, the amount of forward reads is 1 023 720 (Figure 1). The number of reverse reads is always the same due to the paired end mode. Their lengths vary between 35 and 301 bp (Figure 1) with an average around 300 bp (Figure 3) and their quality is high across most of their lengths. Lower quality beyond 260 bp is an expected result due to the MiSeq chemistry. Those statistics are deemed of good quality, albeit not optimum, and are very acceptable based on MiSeq specifications and appropriate for the assembly step.

Each isolate has a FastQC report similar to the one generated for KMA080125. The metric having the highest variance is the number of reads (standard deviation=277 143 reads). Nonetheless, according to our assembly and Blast results (see below), this did not have any significant impact. The number of reads (forward + reverse) among isolates is given in Table 2. It varies between 543 274 reads (KMA096961) and 2 306 692 reads (KMA093977). The high variability and lower number of reads (33 570 998 reads) compared to the MiSeq performance specification (44 000 000 - 50 000 000 reads) could be explained by two factors : first, the high rate of reads filtration; second, the lower cluster density value (1000 k/mm²) obtained during the MiSeq run compared to the specification value (1200-1400 k/mm²). The problem may stem from the library preparation which is a rather complex procedure compared to a simple PCR and implies many steps subject to DNA loss. Accuracy of the original DNA concentration assay is also a potential source of unexpected results. Optimization of the library preparation step and investigation regarding this issue are part of our future plan.

Basic Statistics

Measure	Value
Filename	KMA080125_S4_L001_R1_001.fastq.gz
File type	Conventional base calls
Encoding	Sanger / Illumina 1.9
Total Sequences	1023720
Sequences flagged as poor quality	0
Sequence length	35-301
%GC	40

Figure 1: Statistics summary of the KMA080125_S4_L001_R1.fastq file (forward reads) computed with FastQC.

Figure 2: Box plot representing the average quality across reads length for the KMA080125 forward reads file. Reads positions are located on the horizontal scale and the Phred quality scores on the vertical scale. Green, yellow and red rectangles correspond to high, medium and poor quality base calls, respectively.

Sequence Length Distribution

Figure 3: Reads length distribution for the KMA080215 forward Fastq reads file.

Isolates	Reads numbers ⁽¹⁾	
KMA079789	406 715	
KMA085125	1 023 720	
KMA080288	540 195	
KMA081946	713 798	
KMA091851	1 068 051	
KMA093020	1 053 173	
KMA093977	1 153 346	
KMA094205	1 150 155	
KMA094560	979 655	
KMA094663	406 573	
KMA094689	489 875	
KMA094696	788 724	
KMA094933	759 133	
KMA095336	814 704	
KMA095845	878 063	
KMA095997	985 351	
KMA096033	739 530	
KMA096792-1	735 845	
KMA096961	271 637	
KMA096962	301 144	
MA096695	500 784	
Total reads	15 760 171	

TABLE 2 Paired end reads number generated during the MiSeq run

⁽¹⁾ The total reads number (forward + reverse) for one isolate is two times the displayed value.

Reads assemblies metrics

Genome assemblies is a very complex task which involve complex mathematic algorithms. To date, many assemblers have emerged (<u>http://assemblathon.org/</u>). Those implemented with De Bruijn Graphs (Pevzner *et al.*, 2001) are now considered the most efficient assemblers. Spades has been designed using such an algorithm and is particularly well adapted to manage MiSeq paired ends reads. Previous comparisons with other assemblers such as Velvet (Zerbino, 2010) and Ray (Boisvert *et al.*, 2010) have shown Spades to generate better metrics.

Different metrics are used to evaluate the quality of an assembly. The N50 statistic is well suitable for this. This parameter is defined as the length of the contig for which the sum of the length of all contigs of that length or shorter is higher than half of the sum of the length of the contigs collection. The distribution of contigs length, their coverage and the total contigs length compare to that of the reference genome are also indicative of good or bad assemblies.

To compute metrics of our assemblie's collection, we have used another well designed quality check tool named Quast. This program is easy to use and generate instantly all length statistics at a glance. Figure 4 show an example of a Quast output generated with the KMA080288 assembly. The number of contigs larger than 500 bp is 59, the largest contig is 319 774 bp in length and the N50 statistic is 69 483 bp. The graphic in the right panel is interactive and allows the user to visualize the cumulative length of the assembly starting with the largest contig. The example shows that at the 43rd contig, the cumulative length is 2 042 007 bp. Given that the average genome length of *S. pneumoniae* is 2.16 Mbp, we can consider that those metrics were expected and appropriate for the current project.

QUAST report

tatistics without reference	KMA080288	Plot	s: Cumulative I	ength Nx GC o	ontent						
contigs	59	3 Mbp									KMA(
contigs (>= 5000 bp)	38										- 10020
contigs (>= 50000 bp)	16										
contigs (>= 100000 bp)	4										
contigs (>= 200000 bp)	2										
contigs (>= 500000 bp)	0	100000 C									
contigs (>= 1000000 bp)	0	2.5 Mbp									
rgest contig	319 774										
tal length	2 052 462										
tal length (>= 5000 bp)	2 032 311										
tal length (>= 50000 bp)	1 549 357										
tal length (>= 100000 bp)	767 333	_									
tal length (>= 200000 bp)	530 442	2							43rd contig:		
tal length (>= 500000 bp)	0								2 042 007,	KMA080288	
tal length (>= 1000000 bp)	0										
0	69 483										
75	52 422										
0	8	15			/						
5	16	1.0		1							
C (%)	39.730										
ematches											
Isinatorios	0										
VS	0			/							
vs per 100 kop	0	1	/								
ort report		500 kbp									
		0	5	10	15 2	0 25	30	35 40	45	50 55th contig	

Figure 4: Contigs length statistics generated by the Quast software. KMA080288 assembly as input file is shown.

As previously mentioned, the quality of an assembly is also based on the mean depth of coverage. In short, this value represents the mean frequency at which a single specific nucleotide has been called during a whole genome sequencing run. Generally, the higher this value is, the more confident we are in our assembly. Naturally, the depth of coverage will always be compromised as we increase the number of specimens in a single run and even more when their genome length increase. For this reason, the MiSeq Sequencing Coverage Calculator is highly useful during a run planning.

Unfortunately, Quast software is not well adapted to compute contigs coverage. All necessary data to make such computations belong exclusively to the assembler. In order to extract them from Spades and display coverage distribution graphically among contigs for every isolate, we implemented an inhouse R script. This tool reads the fasta contigs headers from their respective assembly file and produces two graphics for each single isolate; one histogram depicting the absolute depth of coverage distribution and one complement linear plot showing the coverage's values relative to the contigs length. Figures 5 and 6 illustrate an output example for KMA080288. For this isolate, the average depth of coverage is 43X across 2 032 311 bp and that mostly smaller contigs have higher coverage. This observation applies to all final assemblies that we have generated in the current project.

KMA080288 2032311 pb 43 X

Figure 5: Depth of coverage distribution among the KMA080288 contigs collection generated with the Spades assembler.

Figure 6: KMA080288 contigs depth of coverage relative to their respective length.

The main assembly's metrics for all of the 21 pneumococcal isolates are summarized in Table 3. Those metrics exclude contigs smaller than 500 bp. These short sequences are often unreliable and usually part of background data regarded as garbage. This filtration procedure has no impact on the final result. Globally, Table 3 shows that statistics are rather heterogeneous among isolates and seem to be correlated with the number of reads (Table 2). Effectively, one can notice for example that metrics quality of KMA093977 (the isolate having the highest number of reads) are considerably better than those obtained with KMA096961 (the isolate with the lowest number of reads). Nonetheless, based on the global view of the number of reads and contigs statistics, we can conclude that the MiSeq sequencing and the assembly steps have both been successful. That is, resulting data are and appropriate for downstream analysis.

Isolates	Assembly's Length (bp)	Largest contig (bp)	N50	Mean coverage (X)
KMA079789	2 111 694	289 688	71 633	31
KMA080125	2 032 728	340 957	71 895	90
KMA080288	2 032 311	319 774	69 483	43
KMA081946	1 970 356	115 076	67 068	47
KMA091851	1 984 531	151 627	71 048	77
KMA093020	2 051 899	235 604	113 800	70
KMA093977	2 040 673	330 076	74 270	71
KMA094205	2 053 258	330 614	115 223	92
KMA094560	2 118 213	151 822	80 855	83
KMA094663	2 061 526	176 268	54 348	56
KMA094689	2 059 983	207 974	66 632	51
KMA094696	2 069 329	243 814	86 596	70
KMA094933	1 994 414	303 524	86 936	80
KMA095336	2 099 705	176 281	65 535	79
KMA095845	2 043 568	303 918	98 395	90
KMA095997	2 056 093	254 966	86 217	71
KMA096033	2 168 500	169 702	84 611	66
KMA096792-1	2 041 772	241 467	88 561	73
KMA096961	1 968 716	133 241	64 281	30
KMA096962	2 026 356	257 300	98 394	35
MA096695	2 061 094	220 680	88 008	57

TABLE 3 Summary of Spades assembly's metrics⁽¹⁾⁽²⁾

⁽¹⁾ All statistics are based on contigs having length \geq 500 bp.

 $^{\mbox{(2)}}$ Numbers in green and red indicate the highest and lowest values, respectively.

Serotype determination using Blast queries

As described in the Materials and Methods section, we have constructed a small database with 107 different *cps* loci and use it as template to execute Blast queries for each assembly files. Serotype identifications were based on High-scoring Segment Pairs (HSP) length (an alignment length between a query and a subject DNA sequence) and identities values (a combination of HSP with identity value results in a bit score). Table 4 summarizes the Blast results for every isolates and their corresponding expected serotype previously obtained by Quellung reaction. Figure 7 depicts an example of HSP alignment for isolate KMA081946 and describes some of the technical terms appearing in the Table 4 header.

In every case, the correct serotype was found with 98-100% HSP identity. Nonetheless, some Blast results could not perfectly discriminate between two different serotypes because of their high degree of genetic similarities or due to the existence of DNA polymorphism among single serotype (Varvio *et al.*, 2009). This is the case for KMA094560 (15B/15C), KMA095977 (15B/15C), KMA096033 (15B/15C), KMA095336 (15A/15F), KMA094689 (22A/22F), KMA094696 (22A/22F), KMA096962 (22A/22F), KMA081946 (7A/7F) and KMA091851 (11A/11D). Remember that 15B and 15C are considered as one serotype since they interconvert (Pai *et al.*, 2006). Regarding unresolved serotypes 22A/22F, 7A/7F and 11A/11D, more sensitive genetic analysis methods would be required to make a more accurate identification. For example, one could make the identification of non-synonymous single nucleotide polymorphism (SNP) and establish a relation with either serotype.

Another observation extracted from our Blast analysis, is that most of the best hits HSP's doesn't completely cover the *cps* locus reference sequence. Missing segments in the query sequences are always located at both ends of the *cps* locus and correspond to transposase-like regions (*tnp*). Refer to Figure 8 for an example with isolate KMA079789. According to Bratcher *et al.*, 2011, those regions may contribute to the vertical exchange of the *cps* locus between pneumococcal strains and hence to their molecular evolution and adaptation. However, the *tnp* regions are not always present in the *cps* locus which explains why the *cps* locus in our isolates is often shorter.

Interestingly, three isolates, KMA094689, KMA094696 and KMA096962 (Table 4), match serotypes 22F/22A but with two separates HSPs (Figure 9). We found that this unexpected Blast result is caused by the high divergence of two genes (*wcwA* and *wcwC*) in the *cps* locus of those isolates compared to their orthologous sequences in serotype 22F. Similar finding was reported for strain 1772-40b (GenBank accession HE651318; Salter *et al.*, 2012), a 22F serotype which matches perfectly with our 22F isolates.

	Query contige	cps best hit subject			HS	P ⁽¹⁾	Funcested
Isolates	length (bp)	GenBank accession	Serotype	Length (bp)	ldentity (%)	Length (bp)	serotype ⁽²⁾
KN4070790	51 165	CR931675	19A	18 617	98.5	15 141	104
KIVIAU79789		AF094575	19A	18 754	98.4	15 141	19A
KNA080125	340 957	CR931675	19A	18 617	98.5	15 141	194
KIVIA080125	540 557	AF094575	19A	18 754	98.4	15 141	IJA
KM4080288	319 77/	CR931675	19A	18 617	98.4	15 141	194
RIVIA000200	515774	AF094575	19A	18 754	98.4	15 141	104
KMA081946	88 288	CR931640	7A	24 019	99.9	24 019	7F
11111001940	00 200	CR931643	7F	24 127	99.9	24 128	,,
KMA091851	15 007	CR931653	11A	17 948	99.8	14 755	11A
1111/1001001	10 007	CR931656	11D	17 213	100	14 755	
KMA093020	19 703	CR931668	16F	21 481	99.9	19 714	16F
KMA093977	330 076	CR931663	15A	18 517	99.7	18 518	15A
KMA094205	15 301	CR931649	10A	17 290	100	15 301	10A
KMA094560	80 972	CR931664	15B	18 624	99.3	17 288	15B
KWA054500	00 572	CR931665	15C	18 626	99.4	17 288	150
KMA094663	94 633	CR931663	15A	18 517	99.7	18 306	15A
	108 827	CR931681	22A	<mark>22 5</mark> 91	97.9	12 897	
KMA004680					98.0	7 721	225
KIVIA094069		CR931682	22F	22 696	97.9	12 897	221
					98.0	7 721	
KMA094696	21 537	CR931681	224	<mark>22</mark> 591	97.9	12 897	
			ZZA		98.0	6 535	225
		CB021692	225	22.000	97.9	12 897	226
		CK931082	225	22 696	98.0	6 535	
KMA094933	303 524	CR931649	10A	17 290	99.2	15 133	10A
	94 525	CR931663	15A	18 517	99.7	18 306	150
KIVIAU95550		CR931666	15F	22 405	99.2	12 386	IJA
KMA095845	303 918	CR931649	10A	17 290	99.2	14 679	10A
KN1005007	80 971	CR931664	15B	18 624	99.3	17 288	15B
KIMA095997	80 971	CR931665	15C	18 626	18 626 99.4 17 288	17 288	128

	Query contigs	<i>cps</i> be	est hit subj	ect	HSP ⁽¹⁾		Expected
Isolates	length (bp)	GenBank accession	Serotype	Length (bp)	ldentity (%)	Length (bp)	serotype ⁽²⁾
KMA096033	80 939	CR931664	15B	18 624	99.3	17 286	15B
		CR931665	15C	18 626	99.3	17 288	
KMA096792-1	240 139	CR931663	15A	18 517	99.8	18 386	15A
KMA096961	16 885	CR931703	34	15 938	99.9	14 859	34
	108 311	CR931681	22A	22 591	97.8	12 897	
KMA096962					97.7	7 721	225
		CR931682	22F	22 696	97.8	12 897	22F
					97.7	7 721	
MA096695	220 680	CR931687	24B	23 976	98.9	22 332	24 ⁽³⁾

TABLE 4 (continued)

⁽¹⁾ HSP = high-scoring Segment Pairs.

⁽²⁾ Expected serotype according to Quellung reaction.

⁽³⁾ Serogroup 24. Serotype to be determined, unusual cross reaction (24c-, 24d+, 24e+).

Figure 7: Best HSP hit resulting from the Blast query execution of the KMA081946 assembly file on the *cps* database. The dark grey segment in the upper part of the figure represents the serotype 7F *cps* locus (GenBank accession CR931643, 24 127 bp) aligned with the KMA081946 heterologous region (light gray segment). Red region on the KMA081946 sequence represent mismatches and red arrowed segments between the two aligned sequences correspond to coding sequences (with their respective GenBank accession number given in blue) part of the CR931643 7F *cps* locus.

Figure 8: Blast analysis of the KMA079789 assembly showing the absence of *tnp*-like regions at both ends of the *cps* locus in the query sequence (lower gray segment).

Figure 9: Disrupted HSP between a KMA094689 contig and the orthologous *cps* locus of a 22F reference serotype (GenBank accession CR931682). Notice the unmatched region corresponding to genes *wcwA* and *wcwC*.
Evaluation of the multiplex PCR CDC protocol

PCR methods are very powerful, reliable and rather easy to perform. Multiplex PCR is an even more efficient technique since one single reaction allows the simultaneous detection of more than one gene and/or allele. However, designing a multiplex PCR protocol is not an easy task. First, primers must effectively target the region of interest (i.e. primers specificity). Second, the possibility of unwanted intra- and inter-hetero duplex structures arising between primers must be predicted *in silico*. Third, amplicon length must also have the appropriate length combination in order to facilitate the interpretation of the electrophoresis migration profile.

In our case, the multiplex approach used to identify serotypes of unknown pneumococcal samples is further complicated by the fact that epidemiological data must also be considered. PCR master mixes in a sequential strategy are prepared such that most common serotypes (according to the time-space parameter) may be detected in the first step. Obviously, since the serotypes distribution across Quebec is not the same as the ones circulating in USA at the same period, the CDC algorithm should be adapted according Quebec's data. The sequential reaction order could be modified but the primers combination in each of them must stay intact to avoid any unexpected results such as false positives and false negatives.

All primer pairs have been designed in such a way that they bind DNA regions or genes specific to their targeted serotype *cps* locus. However, serotypes among a serogroup due to their high level of genetic homogeneity are inevitably revealed under the same signal in the current protocol. For example, primer pair 6A/6B/6C/6D in reaction 1 is simultaneously specific to four different serotypes. This may be a significant disadvantage relative to the Quellung reaction. However, the multiplex PCR approach is a cost effective method.

All reaction mixtures have been tested with isolates of known serotype previously identified by the Quellung reaction. At this moment, our isolates library at the LSPQ doesn't cover all of the 92 possible serotypes. Then, we tested at least one appropriate isolate for every primer pair's evaluation. Notice that every reaction includes the primer pair CPSA-F/CPSA-R as internal control. Those primers target the *cpsA* gene, a highly conserved gene which belongs to the regulatory region of the *cps* locus. Figures 10 to 18 show our electrophoresis results obtained for all PCR multiplex reactions and may be compared to the expected CDC results available at http://www.cdc.gov/streplab/downloads/pcr-us-clinical-specimens.pdf.

Figure 10: Electrophoresis profile obtained with the multiplex reaction 1 used to detect serotypes 3, 6A/6B/6C/6D, 19A, 22A/22F, 16F.

Figure 10 (continued).

Figure 11: Electrophoresis profile obtained with the multiplex reaction 6C used to detect serotypes 6C/6D.

Figure 11 (continued).

Figure 12: Electrophoresis profile obtained with the multiplex reaction 2 used to detect serotypes 8, 33F/33A/37, 15A/15F, 7F/7A and 23A.

Figure 13: Electrophoresis profile obtained with the multiplex reaction 3 used to detect serotypes 19F, 12F/12B/12A/44/46, 11A/11D, 38/25F/25A and 35B.

Figure 14: Electrophoresis profile obtained with the multiplex reaction 4 used to detect serotypes 24F/24A/24B, 7C/7B/40, 4, 18C/18F/18B/18A and 9V/9A.

Figure 15: Electrophoresis profile obtained with the multiplex reaction 5 used to detect serotypes 14, 1, 23F, 15B/15C and 10A.

Figure 16: Electrophoresis profile obtained with the multiplex reaction 6 used to detect serotypes 39, 10F/10C/33C, 5, 35F/47F and 17F.

Figure 17A: Electrophoresis profile obtained with the multiplex reaction 7 used to detect serotypes 23B, 35A/35C/42, 34, 9N/9L and 31. Isolates MA092229 (serotype 35A, expected amplicon is 280 bp) and LSPQ 3127 (serotype 34) first genomic extracts.

Figure 17B: Electrophoresis profile obtained with the multiplex reaction 7 used to detect serotypes 23B, 35A/35C/42, 34, 9N/9L and 31. Isolates MA092229 (serotype 35A, expected amplicon is 280 bp) and LSPQ 3127 (serotype 34) second genomic extracts.

Figure 17C: Electrophoresis profile obtained with the multiplex reaction 7 used to detect serotypes 23B, 35A/35C/42, 34, 9N/9L and 31. KMA082642 (serotype 35A, expected amplicon is 280 bp) and KMA099037 (serotype 34).

Figure 18: Electrophoresis profile obtained with the multiplex reaction 8 used to detect serotypes 21, 2, 20 and 13.

A total of 60 pneumococcal isolates of known serotypes were tested in order to evaluate the reproducibility of the CDC multiplex PCR protocol. Except for a very few cases (3% misidentified), results are in complete agreement with the expected results (38% to serotype, 35% to serogroup and 23% to subset). It should be noted that bands are generally very well defined and have high intensity when amplicon length is greater than 200 bp. Bands under this marker are often of lighter intensity because of the ethidium bromide which, due to his opposite electric charge compared to DNA, migrates upward.

The only puzzling result we have observed is for serotype 35A which was expected to be detected with reaction 7 (Figure 17A to C). This serotype, targeted by primers 35A/35C/42, was supposed to be revealed with a 280 bp amplicon which we did not observed using two different 35A isolates (MA092229 on Figure 17A and KMA082642 on Figure 17C) and two different genomic extracts of MA092229 (Figure 17A and Figure 17B). A problem with the quality of the 25 µM primers preparation was ruled out based on the positive result obtained with serotype 42 which was also detected with the 35A/35C/42 primers. However, a non-specific band around 250 bp was detected for serotype 42 using the 35A/35C/42 primers (Figure 17A). More extensive studies should be undertaken to explain this issue. Nonetheless, the most probable assumption is that our 35A and 42 isolates are different from those previously tested by the CDC. They are probably sufficiently genetically different compared to the ones tested at the CDC as to be unrecognizable by the PCR primers. A single SNP located in a region needed for an appropriate primer hybridization could perturb the initiation of DNA replication by the polymerase and consequently prevent the amplification of the target DNA leading to an absence of the expected PCR product.

A special attention must be paid to the detection of serotype 38 with PCR reaction 3 (Figure 13). This is the only serotype which is negative for the *cpsA* band. A *cpsA* negative result for serotype 38 and serotype 25F (no isolate with serotype 25F in the current study) is well documented in Carvalho *et al.*, (2010).

Finally, another issue was observed with reaction 7 in that a weak non-specific band at around 250 bp occurred for serotype 34 (Figure 17A and 17B). Two different serotype 34 isolates and two different genomic extracts were tested to confirm this issue. The same results were obtained in all cases. According to the expected electrophoresis profile, this band should not appear. However, our isolates of serotype 34 do not necessarily have the same genetic background as those tested by the CDC.

Evaluation of the sequetyping method based on the cpsB gene

The last DNA-based serotyping method that we evaluated in the current project is the one developed by Leung *et al.*, (2012) named sequetyping. To evaluate the sequetyping method, we have chosen 74 pneumococcus isolates covering a total of 73 different serotypes (two isolates with serotype 29 have been tested). Isolates with serotypes 27, 38, 37, 39 and 43, and one of our two serotypes 29 yielded no amplicon after the PCR amplification step (the extracts of those isolates have tested positive for the presence of genomic DNA). This result is nonetheless in accordance with Leung *et al.*, (2012) since those six serotypes were predicted *in silico* to be nonamplifiable. Actually, the Leung *et al.*, (2012) method could putatively only amplify 84 among the 92 possible serotypes.

We have successfully sequenced 68 isolates. The average sequence length is 942 bp. The shortest one is 860 bp and was obtained with our serotype 29 isolate. This serotype was not predicted to yield an amplicon and the band intensity on the gel was lower than usual. However, 860 bp is still longer than the 732 bp region used by Leung *et al.*, (2012) to test all their serotypes.

In order to verify the concordance with the Quellung expected serotypes of our isolates, we ran, for each cpsB sequence, the Blast algorithm on the GenBank NCBI database. All hits list was filtered to follow our serotype identification rule described in Material and Methods. Final results are reported in Table 5. They show that 32 isolates (47%) were correctly sequetyped, 9 (13%) were sequetyped to the serogroup level, 10 (15%) gave ambiguous results and 17 (25%) were misidentified. Misidentified results were obtained for serotypes 9A, 11F, 12A, 12F, 15C, 15F, 16A, 18C, 19B, 19C, 24F, 29, 35A, 41A, 42, 44 and 46. Similar results were obtained by Leung et al., (2012) for serotype 12F; one 12F strain was sequetyped as 12B. LSPQ 3064 isolate was identified as serotype 12A with 100% identity (98.9% with a serotype 12F). Regarding 24F, both studies have sequetyped their tested strains as 24B. The Blast identities for the 24F isolate (MA099028) were 99.6% for 24B and only 96.3% for 24F. For 18C, Leung et al., (2012) has sequetyped 6 isolates to the serogroup level (18B/18C). Our 18C isolate (MA095139) was categorized as misidentified but shows only one mismatch with the 18B reference sequence. The misidentification of the 35A isolate (MA092229) is also due to one single mismatch with 35B and 35C and was not resolved correctly in the Leung et al., (2012) study. Our serotype 29 isolate (KMA099083) is the only one which is very far genetically from the available serotype 29 sequences in GenBank; 83% identity with a serotype 29 and 100% with serotypes 35C and 35B. More serotypes 29 should be evaluated although it is a rare occurrence in Quebec. This misidentification was not observed in the Leung et al., (2012) study.

Apart from serotypes 12F, 24F, 18C, 35A, and 29, no equivalent data are available in Leung *et al.*, (2012) for the other misidentified serotypes. For serotype, serogroup and ambiguous levels identification, our results are generally the same as the ones obtained by Leung *et al.*, (2012). Comparisons, however, are not always possible since 27 of our serotypes are missing in the Leung *et al.*, (2012) study. Nonetheless our evaluation of the sequetyping approach has demonstrated that this

serotyping method is not always able to correctly identify serotype probably due to small DNA sub region of a large locus including in this analysis.

	<i>cps</i> best NCE	3I hit subject		Europete d	Identification	
Isolates	GenBank	Serotype	HSP ⁽¹⁾ identities	serotype ⁽²⁾	level	
		1	020/020	1	Saratura	
LSPQSUSS	CR951052	105	959/959	1	Serotype	
10000054	JF911531	19F	931/939	2	A	
LSPQ3054	CR931633	2	936/936	2	Ambiguous	
10000055	CR931/13	41A	936/936	2	Construct	
LSPQ3055	247210	3	934/934	3	Serotype	
10000057	CR931679	20	919/934	-	Construct	
LSPQ3057	CR931637	5	938/938	5	Serotype	
10000000	JF911531	19F	920/938	<i></i>	6	
LSPQ3058	JF911494	6A	935/935	6A	Serotype	
	CR931639	6B	934/935			
LSPQ3064	CR931658	12A	937/937	12F	Misidentified	
	CR931660	12F	927/937			
LSPQ3065	CR931679	20	945/945	13	Ambiguous	
	CR931661	13	945/945			
LSPQ3066	CR931662	14	944/944	14	Serotype	
	JF911531	19F	936/944			
LSPQ3071	CR931675	19A	942/942	19A	Serotype	
	CR931684	23B	918/942			
LSPQ3072	CR931679	20	928/929	20	Ambiguous	
	CR931661	13	928/929			
LSPQ3080	CR931695	31	944/945	31	Serotype	
	CR931713	41A	933/945			
LSPQ3081	CR931697	32F	942/942	32F	Serogroup	
	CR931696	32A	942/942			
LSPQ3089	CR931714	41F	942/943	41A	Misidentified	
	CR931713	41A	918/944			
LSPQ3092	CR931718	45	948/948	45	Serotype	
	CR931699	33B	932/948			
LSPQ3093	CR931658	12A	957/957	46	Misidentified	
	CR931719	46	956/956			
LSPQ3095	CR931722	48	949/949	48	Serotype	
	CR931679	20	943/949			
LSPQ3124	CR931635	4	940/949	4	Serotype	
	AF402095	9V	931/940			
LSPQ3127	CR931703	34	935/936	34	Ambiguous	
	CR931669	17A	935/936		2	

TABLE 5 Pneumococcal serotype identification using the sequetyping approach

	<i>cps</i> best NCE	31 hit subject		Europete d	I de a tifice tie a	
Isolates	GenBank	Serotype	HSP ⁽¹⁾ identities	expected		
	accession			Serveype	level	
LSPQ3160	CR931680	21	934/935	21	Serotype	
	JF911515	6C	918/935			
LSPQ3162	CR931712	40	947/947	40	Ambiguous	
	CR931641	7B	947/947			
LSPQ3596	CR931644	8	936/936	8	Serotype	
	CR931713	41A	927/936			
LSPQ3641	CR931708	36	958/959	36	Serotype	
	CR931667	16A	956/959			
LSPQ3644	CR931659	12B	957/957	44	Misidentified	
	CR931717	44	948/957			
LSPQ3677	CR931706	35C	967/967	42	Misidentified	
	CR931705	35B	967/967			
	CR931715	42	954/967			
LSPQ3769	CR931683	23A	928/928	23A	Serotype	
	JF911531	19F	891/926			
LSPQ3770	CR931639	6B	941/941	6B	Serotype	
	JF911494	6A	940/941			
LSPQ4102	CR931643	7F	944/945	7A	Serogroup	
	CR931640	7A	944/945			
LSPQ4103	CR931712	40	948/949	7B	Ambiguous	
	CR931641	7B	948/949			
LSPQ4162	CR931682	22F	941/941	22F	Serogroup	
	CR931681	22A	941/941			
LSPQ4231	CR931642	7C	943/943	7C	Serotype	
	CR931677	19C	940/943			
LSPQ4236	CR931668	16F	939/939	16F	Serotype	
	JF911531	19F	930/939			
LSPQ4242	JF911515	6C	924/924	6C	Serotype	
	JF911503	6B	921/924			
LSPQ4243	CR931671	18A	941/941	18A	Serotype	
	CR931632	1	919/941			
MA065427	CR931668	16F	944/945	16A	Misidentified	
	CR931667	16A	910/947			
MA066814	CR931672	18B	948/948	18B	Serotype	
	CR931673	18C	947/948			
MA073130	CR931655	11C	941/942	11F	Misidentified	
	CR931657	11F	870/929			

	cps best NCB	I hit subject		Europeto d	Identification
Isolates	GenBank	Serotype	HSP ⁽¹⁾ identities	expected	lovel
	accession			serotype	level
MA075627	CR931652	10F	937/937	10F	Serogroup
	CR931651	10C	937/937		
	JF911518	19A	901/933		
MA080418	AF402095	9V	950/950	9A	Misidentified
	CR931645	9A	949/950		
MA080812	CR931650	10B	951/951	10B	Serotype
	CR931649	10A	905/951		
MA083042	JF911519	19A	939/939	19B	Misidentified
			No significant hit with 19B		
MA083248	CR931663	15A	943/943	15F	Misidentified
	CR931666	15F	935/943		
MA084138	JF911519	19A	938/938	19C	Misidentified
			No significant hit with 19C		
MA086628	CR931704	35A	939/940	33A	Ambiguous
	CR931702	33F	939/940		
	CR931698	33A	939/940		
	CR931706	35C	938/940		
MA090174	CR931649	10A	940/940	10A	Serotype
	CR931650	10B	894/940		
MA090298	CP002121	11A	947/947	11A	Ambiguous
	CR931674	18F	947/947		
	CR931656	11D	947/947		
	CR931684	23B	924/946		
MA092229	CR931706	35C	937/937	35A	Misidentified
	CR931705	35B	937/937		
	CR931704	35A	936/937		
MA092686	JF911515	6C	939/939	6D	Serogroup
	HM448897	6D	939/939		
	JF911503	6B	936/939		
MA094350	CR931687	24B	947/950	24B	Serotype
	CR931642	7C	932/950		
MA095139	CR931672	18B	949/949	18C	Misidentified
	CR931673	18C	948/949		
MA095690	CR931692	28A	941/941	28A	Serotype
	CR931693	28F	940/941		

<i>cps</i> best NCBI h		3I hit subject	t subject		lala antificanti a m	
Isolates	GenBank	Serotype	HSP ⁽¹⁾ identities	Expected	Identification	
	accession			serotype	level	
MA095877	CR931682	22F	927/930	22A	Serogroup	
	CR931681	22A	927/930			
	CR931648	9V	921/930			
MA096496	CR931688	24F	933/951	15C	Misidentified	
	CR931665	15C	918/953			
MA097699	CR931659	12B	939/941	12A	Misidentified	
	CR931658	12A	936/941			
MA097723	CR931706	35C	957/958	35B	Serogroup	
	CR931705	35B	957/958			
MA097930	CR931655	11C	958/958	11B	Serogroup	
	CR931654	11B	958/958			
	CR931684	23B	934/957			
MA098807	CR931670	17F	949/949	17F	Serotype	
	CR931700	33C	948/949			
MA098992	JF911522	19F	945/945	19F	Serotype	
	HG799504	19A	942/945			
MA099028	CR931687	24B	946/949	24F	Misidentified	
	CR931688	24F	916/951			
MA099177	KC688319	15B	949/949	15B	Serotype	
	CR931688	24F	934/952			
MA099195	CR931721	47F	955/955	35F	Ambiguous	
	CR931707	35F	955/955			
	CR931664	15B	936/955			
MA099234	AF402095	9V	919/922	9V	Serotype	
	CR931645	9A	918/922			
MA099238	CR931704	35A	946/947	33F	Ambiguous	
	CR931702	33F	946/947			
	CR931698	33A	946/947			
	CR931706	35C	945/947			
MA099389	CR931663	15A	946/946	15A	Serotype	
	CR931666	15F	938/946			
MA099461	CR931643	7F	950/950	7F	Serogroup	
	CR931640	7A	950/950			
	JF911531	19F	935/950			
MA099463	CR931647	9N	921/921	9N	Serotype	
	CR931646	91	920/921			

	<i>cps</i> best NCE	31 hit subject		Exported	Idoptification	
Isolates	GenBank	Serotype	HSP ⁽¹⁾ identities	serotype ⁽²⁾		
	accession			Scrotype	level	
MA099467	CR931685	23F	946/946	23F	Serotype	
	CR931709	37	931/946			
MA099469	CR931684	23B	936/936	23B	Serotype	
	CR931674	18F	914/936			
KMA099083	CR931706	35C	860/860	29	Misidentified	
	CR931705	35B	860/860			
	CR931694	29	606/803			

⁽¹⁾ HSP = High-scoring Segment Pairs.

⁽²⁾ Expected serotype according to Quellung reaction.

Discussion and conclusion

The aim of the current project was to evaluate three DNA-based *Streptococcus pneumoniae* serotyping approaches which could eventually replace the current Quellung gold standard method. One of those, the WGS, is currently not well adapted to a surveillance program. Instead, it would be valuable in the understanding of epidemiological phenomenon such as serotypes replacement and in the comprehension of the molecular mechanism implicated in the capsular polysaccharide synthesis. Moreover, WGS allows the analysis of molecular evolution of the strains, the identification of putative vaccine target in addition to the study of antibiotic resistance and virulence genes.

WGS is costly, time consuming and relatively laborious. This is why this method is unlikely to be used as monitoring tool of invasive *S. pneumoniae* serotypes at this moment. However, bioinformatic pipelines are increasingly automated, costs are decreasing and the technology is more widely available in low-resource settings. A sequencing strategy which exclusively target *cps* locus could be developed. For these reasons, it is likely that WGS will eventually replace conventional typing tools for pneumococci. We have tested, through a next generation sequencing pipeline, our ability to find the expected serotype for 21 isolates representing 10 different serotypes. Results were very convincing in that we were able to extract the entire capsulation locus and identify it correctly for all tested isolates (52% to serotype and 48% to serogroup). We are now looking forward to get a better genetic profile of some isolates in order to better predict their emergence capabilities following the introduction of a new conjugate vaccine.

The sequential multiplex PCR and sequetyping strategy unlike WGS have specifically been developed to improve the serotyping response time and to reduce the associated costs. We have then mainly focused on those two methods in this study. The sequential multiplex approach remain the most cost effective choice (between 30\$ and 80\$ per strain according to the multiplex design) but unlike the sequetyping method, this method has the inconvenience of requiring an adaptation to the local epidemiology of circulating serotypes. Simply changing the sequential order of the reaction may be sufficient but more often reviewing the combination of primers in the reaction mixture is needed. Unfortunately, this is not always possible.

In the current project, we have demonstrated that the sequential multiplex PCR method is very fast. Resulting electrophoresis patterns are also easy to interpret. Except for serotype 35A, we have successfully reproduced the CDC multiplex scheme. Interestingly, no band was obtained for serotype 35A (reaction 7) using two different samples though we have confirmed the sensitivity of primers 35A/35C/42. to verify whether any single nucleotide polymorphism (SNP) may have prevented an appropriate primer pairing. In addition, reference strains from Statens Serum Institut should be tested.

Another important issue with the multiplex method is the existence of cross reactivity between many serotypes. There are some serotypes (22F/22A, 33F/33A/37, 15A/15F, 6A/6B, 6C/6D, and 7A/7F...) which could not be resolved using this method. However, this disadvantage may be negligible if we take into account only the most frequently occurring serotypes. For example, serotypes 22F and 22A are both detected under the same PCR signal. But statistically, according to epidemiological data for Quebec from 2013 to 2015 (occurrence of 12.7% for serotype 22F compared to 0.2% for serotype 22A), 22F is by far the most probable one. In that case, Quellung should be used to confirm the right serotype. The same rationale should be applied when facing a positive result with 7F/7A PCR in reaction 2; serotype 7A is very uncommon (0.1%) compared to the high frequency (8.6%) of serotype

7F. Conventional serological method is also needed to resolve a positive PCR signal for 6A/6B in reaction 6C/6D. Another alternative would be to perform a pyrosequencing assay (Pai *et al.*, 2005). The latter has not been tested and was not part of the current project.

The second DNA-based approach tested, the sequetyping method developed by Leung *et al.*, (2012), is very interesting since only one primer pair is needed compared to 41 with the PCR multiplex approach. This method is technically very simple; it is based on the sequencing of a single variable DNA region inside the *cpsB* gene which is unique to *S. pneumoniae*. Furthermore, this method is insensitive to epidemiological data and is quite cheap (~20\$). Nonetheless, results are often limited to serogroup identification and sometimes are even ambiguous. Then, we must have to apply some statistical deductions as described before or keep the Quellung reaction as final discriminator. Sequetyping does not always identify at the serotype level nor at the serogroup level as described in Leung *et al.*, (2012). This is because some serotypes may have identical *cpsB* sequences as it is the case with some 6A and 6B strains (Elberse *et al.*, 2011). Furthermore, existing intraserotype variation (Varvio *et al.*, 2009) in the *cps* regulatory region can lead to identification in the wrong serogroup. This issue has already been observed by Leung *et al.*, (2012) with one 19F strain identified as a serotype 1.

A proportion of 47% of our pneumococcal isolates was correctly resolved at the serotype level using the sequetyping approach. However, the identification level rules we used could be biased due to the existence of intra-serotype variation in the *cpsB* gene. For example, an unknown sample for which its *cpsB* region shares 945/945 identities with GenBank 6A serotype and 944/945 compared to a 6B serotype does not necessarily mean that this sample is a 6A serotype. We nonetheless have correctly identified 6 serotypes among the 8 most prevalent (22F (12.7%), 3 (11%), 19A (10.7%), 7F (8.6%), 15A (5.6%), 9N (4.9%), 16F (3.8%) and 23A (3.7%)) in Quebec between 2013 and 2015. Serotypes 22F and 7F have been identified to the serogroup level.

The sequetyping strategy is obviously dependent on a rich sequence database. Currently all Blast queries rely on the collection of *cpsB* sequences deposited in the NCBI GenBank database. Accuracy of the method over time will then be considerably improved with the addition of new sequences coming from different laboratories worldwide. Management of an independent curated *cpsB* database would be highly recommended.

We have demonstrated in this study that at least two molecular techniques, sequential multiplex PCR and sequetyping, are rapid, easy and could potentially gradually replace the traditional serological method. However, data shown that sequetyping is not as reliable as sequential multiplex PCR. Nevertheless, preliminary data show that the Quellung method could still be useful when molecular approaches give inconclusive results. It is important to note that rare untypeable strains, due to their lack of capsular polysaccharide, may generate a positive result with DNA based method. In such cases, the final serotype identification would be in disagreement with the Quellung reaction which would produce a negative result. Conversely, the sequetyping or multiplex PCR approach may rescue the Quellung reaction when the capsular swelling if difficult to observe through microscopic examination.

This completes the first phase of the project dedicated to the monitoring of new molecular tools for the serotyping of *S. pneumoniae* invasive strains. Results obtained from the development phase of the project are summarized in Table 6.

WGS correctly identified serotype of all tested isolates (52% to serotype and 48% to serogroup). With a cheapest and automated pipeline, this method should be kept in mind for serotyping strains from Quebec's surveillance program.

In our study, 23 isolates (38%) were specifically assigned to serotype using sequential multiplex PCR with the results in full accordance with conventional serotyping. Twenty-one other isolates (35%) were assigned to the right serogroup and 14 isolates (23%) to the correct subset. Only few isolates (n=2) could not be correctly associated to serotype, serogroup or subset (3%).

Using sequetyping method, 32 isolates (47%) were specifically assigned to serotype; expected results according to gold standard method. Other 9 isolates (13%) were assigned to the right serogroup. However, 10 isolates (15%) gave ambiguous results and 17 isolates (25%) were misidentified.

In the second phase of this project, efforts will be directed towards the proof-concept. Many additional strains will be tested by using the three DNA-based methods, WGS, sequential multiplex PCR and sequetyping. Here also, results will be compared to the Quellung gold standard method. Execution time, time delivery and cost will also be compiled and assessed in order to guide our final choice for the most efficient serotyping method to use in our surveillance program at the LSPQ.

Here are the next steps to be performed during Part 2 of the study (proof of concept):

- Specificity testing (serotype) for multiplex PCR.
- Specificity testing (*Streptococcus* species other than *S. pneumoniae*) for multiplex PCR and sequetyping.
- Testing of serotypes not previously available at LSPQ or problematic (9L, 10C, 11C, 11D, 12B, 17A, 18F, 24A, 25A, 25F, 28F, 29, 32A, 33B, 33C, 33D, 35A, 35C, 41F, 47A, 47F) by WGS, multiplex PCR and sequetyping.
- Strains received at LSPQ for provincial surveillance will be analyzed using WGS, sequential multiplex PCR and sequetyping methods.

Acknowledgements

This work was supported by Grant IIR number WI197603 from Pfizer Canada.

We thank Jean-Charles Côté, Ph.D., microbiologist, LSPQ, for proofreading of the report and Christine Martineau, Ph.D., microbiologist, LSPQ, for WGS assistance.

TABLE 6 Summary of the molecular methods used for S. pneumoniae serotyping.

			Serotyping results (concordance with Quellung)				
Methods	Advantages	Disadvantages	Serotype	Serogroup	Subset ⁽¹⁾	Ambiguous	Mis- identified
WGS (n=21 strains tested from 10 different serotypes)	 Includes all serotypes Additional information obtained at the same time (multi-locus sequence type, antimicrobial resistance) are useful for other studies Identification of putative vaccine target and serotyping evolution analysis 	 Laborious Expensive (~200\$/strain) A lot of data to manage Needs bioinformatics setup Time consuming 	52%	48%	N/A	0%	0%
Sequential multiplex PCR (n= 60 strains tested from 58 different serotypes)	 Cost-effective (30 \$ - 80\$/strain) Method easily achievable Serotype easily determined Straightforward 	 Occasional issues such as false negative, non-specific band and small amplicon To be customized according to local epidemiology Detection of known serotypes Not useful for all serotypes Possibility of cross-reactions 	38%	35%	23%	N/A	3%
Sequetyping (n=68 strains tested from 68 different serotypes) ⁽²⁾	 Rapid Easy to set up Inexpensive (~20\$/strain) 	 Not useful for all serotypes False assignment of serotype due to potential for gene exchange Method based on public databases Necessity of a <i>cpsB</i> curated bank 	47%	13%	N/A	15%	25%

⁽¹⁾ Defined as correct results obtained with PCR multiplex primers detecting a subset, for example 33F/33A/37 (reaction 2).

⁽²⁾ 74 isolates selected from 73 different serotypes; 68 isolates successfully sequenced from 68 different serotypes.

References

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N., Tesler, G., Alekseyev, M.A., Pevzner, P.A. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *J. Comput. Biol.* **19(5)**:455-77.

Boisvert, S., Laviolette, F., Corbeil, J. 2010./ Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies. *J. Comput. Biol.* **17(11)**:1519-33.

Bratcher, P.E., Park, I.H., Oliver, M.B., Hortal, M., Camilli, R., Hollingshead, S.K., Camou, T., Nahm, M.H. 2011. Evolution of the capsular gene locus of *Streptococcus pneumoniae* serogroup 6. *Microbiology*. **157(Pt 1)**:189-98.

Camargo, D.R., Pais, F.S., Volpini, Â.C., Oliveira, M.A., Coimbra, R.S. 2015. Revisiting molecular serotyping of *Streptococcus pneumoniae*. *BMC Genomics*. **16 Suppl 5**:S1.

Carvalho da Gloria, M., Pimenta, F.C., Jackson, D., Roundtree, A., Ahmad, Y., Millar, E.V., O'Brien, K.L., Whitney, C.G., Cohen, A.L., Beall, B.W. 2010. Revisiting pneumococcal carriage by use of broth enrichment and PCR techniques for enhanced detection of carriage and serotypes. *J. Clin. Microbiol.* **48(5)**:1611-8.

Elberse, K., Witteveen, S., van der Heide, H., van de Pol, I., Schot, C., van der Ende, A., Berbers, G., Schouls, L. 2011. Sequence diversity within the capsular genes of *Streptococcus pneumoniae* serogroup 6 and 19. *PLoS One.* **6(9)**:e25018.

Gurevich, A., Saveliev, V., Vyahhi, N., Tesler, G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics. **29(8):**1072-5.

Leung, M.H., Bryson, K., Freystatter, K., Pichon, B., Edwards, G., Charalambous, B.M., Gillespie, S.H. 2012. Sequetyping: serotyping *Streptococcus pneumoniae* by a single PCR sequencing strategy. *J. Clin. Microbiol.* **50(7)**: 2419-27.

Pai, R., Gertz, R.E., Beall, B. 2006. Sequential multiplex PCR approach for determining capsular serotypes of *Streptococcus pneumoniae* isolates. *J. Clin. Microbiol.* **44(1)**:124-31.

Pai, R., Limor, J., Beall, B. 2005. Use of pyrosequencing to differentiate *Streptococcus pneumoniae* serotypes 6A and 6B. *J. Clin. Microbiol.* **43(9)**:4820-2.

Pevzner, P.A., Tang, H., Waterman, M.S. 2001. An Eulerian path approach to DNA fragment assembly. *Proc. Natl. Acad. Sci. U. S. A.* **98(17)**:9748-53.

Salter, S.J., Hinds, J., Gould, K.A., Lambertsen, L., Hanage, W.P., Antonio, M., Turner, P., Hermans, P.W., Bootsma, H.J., O'Brien, K.L., Bentley, S.D. 2012. Variation at the capsule locus, cps, of mistyped and non-typable *Streptococcus pneumoniae* isolates. *Microbiology*. **158(Pt 6)**:1560-9.

Varvio, S.L., Auranen, K., Arjas, E., Mäkelä, P.H. 2009 Evolution of the capsular regulatory genes in *Streptococcus pneumoniae*. J. Infect. Dis. 200(7):1144-51.

Zerbino, D.R. Using the Velvet de novo assembler for short-read sequencing technologies. 2010 *Curr Protoc Bioinformatics*. **Chapter 11**:Unit 11.5

Pfizer	S	STUDY STATUS UPDATE FORM: CLINICAL			
IIR Grant Specialist			IIR Grant Specialist PHONE		1
IIR Grant Specialist EMAIL		IIR Grant Specialist FAX			1

PLEASE COMPLETE AND RETURN BY: November 18, 2015

Per contractual requirements, we are requesting a status update on your IIR study supported by Pfizer via funding and/or drug. Please answer the following questions regarding the above referenced study by the due date. Answers from your last submitted update have been incorporated below; please update as needed and answer the remaining questions.

GENERAL INFORMATION							
Pfizer Tracking #	WI197603		Institutional Protocol #				
Principal Investigator	Dr. Brigitt	te Lefebvre					
Study Title	Molecular surveillan	lolecular tools for serotyping for Streptococcus pneumoniae ir urveillance in the province of Quebec.					
STUDY UPDATE INFORMA	TION						
Has this study been initiated?		🗌 NO 🛛 YES	Date of initiation	mm/dd/yyyy			
Has the protocol been amended	d since last up	odate?	NO YES (If YES, please provide the revised protocol)				
Current IRB/IEC approval/renew	val expires on	last IRB date	This is not current, please forward the mos	t recent letter			
Have there been any personnel of	changes? (If Y	ES, please provide n	ame and full contact info on Page 3)	NO YES			
Target protocol enrollment			Date of first subject enrolled	mm/dd/yyyy			
Last reported enrollment			Actual enrollment to date (this should not include screen failures)				
Targeted last subject last visit			Actual last subject last visit				
Do you have current drug suppl on Page 3)							
Is this protocol closed to enrollr	NO YES						
Targeted study completion date	(primary obje	ectives met; patient	therapy and final study analysis complete)	mm/dd/yyyy			
Actual study completion date (ij	f applicable)			mm/dd/yyyy			
mm/dd/yyyy							
PUBLICATION INFORMATION							
Do you plan to publish? (If YES,	🗌 NO 🔀 YES						
Please be aware that, according to the IIR agreement, the investigator is required to provide Pfizer with an opportunity to prospectively review any proposed publication, abstract or other type of disclosure that reports the results of the study.							

Pfizer		STUDY FOF	STATUS UPDA RM: CLINICAL	ATE		
III IIR Grant	R Grant Specialist		IIR Grant Specialit	st PHONE ialist FAX		
FORMAT	PU (please include antic	BLICATION cipated journal or	audience)	PLANNED	ACTUAL	SUBMISSION DATE mm/dd/yyyy
Abstract	act CACMID or ISPPD					2016
Manuscript	Journal of clinical microbiology			\boxtimes		At the end of study
Poster						
Other	Study report Title: Molecular tools for serotyping for <i>Streptococcus pneumoniae</i> invasive strains surveillance in the province of Quebec (study report - part 1).				\boxtimes	11/12/2015
SIGNATURE						
NAME	Brigitte Lefebvre					
DATE	11/17/2015 mm/dd/yyyy	SIGNATU	RE (ONLY if faxed)			

Pfizer	STUDY FOR		STATU RM: CLI	S UPDATE NICAL	
IIR Grant S	Specialist		IIR Gra	nt Specialist PHONE	
IIR Grant Speciali	st EMAIL		IIR	Grant Specialist FAX	
DRUG SUPPLY IN	FORMATION				
SUPPLY CURRENTLY	ON SITE			ACTIVE	PLACEBO
ESTIMATED REMAIN	DER REQUIRED TO COM	PLETE STUDY		ACTIVE	PLACEBO
CAN PHARMACY ACC	COMODATE TOTAL REM	AINDER?		YES	ΝΟ
PERSONNEL INFO	ORMATION				
	PRINCIPAL	INVESTIGATOR		cc	OORDINATOR
NAME					
INSTITUTION					
MAILING ADDRESS					
TELEPHONE					
FAX					
EMAIL					
	РНА	RMACIST		OTHER (specify	y in additional comments)
NAME					
INSTITUTION					
MAILING ADDRESS					
TELEPHONE					
FAX					
EMAIL					
ADDITIONAL COMMENTS					

Entente relative à un essai proposé par un investigateur

Pfizer Canada inc., société dûment constituée en vertu des lois du Canada dont l'établissement principal est situé au 17300, autoroute Transcanadienne, Kirkland (Québec)

ET :

ET:

autoroute Transcanadienne, Kirkland (Québec) H9J 2M5 (« Pfizer »), Institut national de santé publique du Québec, personne morale légalement constituée par la *Loi*

sur l'Institut national de santé publique du Québec (RLRQ, chapitre I-13.1.1), administrant le Laboratoire de santé publique du Québec (LSPQ), situé au 20045, chemin Sainte-Marie, Sainte-Annede-Bellevue (Québec) H9X 3R5 (« l'Établissement »),

Brigitte Lefebvre, Ph. D., exerçant ses activités au Laboratoire de santé publique du Québec (LSPQ) 20045, chemin Sainte-Marie, Sainte-Anne-de-Bellevue (Québec) H9X 3R5 (le « promoteur-investigateur »)

(Pfizer, l'Etablissement et le promoteurinvestigateur, individuellement désignés en tant que « partie » et, collectivement, « **les parties** ».)

L'entente est en vigueur à compter du 21 octobre 2015 (« Date d'entrée en vigueur ").

Le promoteur-investigateur à conçu et souhaite mener une étude observationnelle prospective intitulée « Serotyping for Streptococcus pneumonia invasive strains in adult population surveillance in the province of Quebec: a 3 years study evaluation under the Protocol WI203144 », lequel est joint comme annexe C (le « protocole ») et (« l'étude »). Pfizer souhaite fournir certains services de soutien pour l'étude.

ATTENDU que le promoteur-investigateur souhaite recevoir un certain soutien de la part de Pfizer afin de mener à bien l'étude à l'Établissement;

Brigitte Lefebvre, Ph. D. IIR WI203144 07 oct. 2015 **ATTENDU** que Pfizer a accepté de fournir un tel soutien au promoteur-investigateur selon les modalités énoncées dans la présente entente, étant entendu que Pfizer n'est pas le promoteur de l'étude et qu'elle ne doit en aucun cas être considérée ou représentée comme tel.

EN CONSÉQUENCE, les parties conviennent de ce qui suit :

- 1. Investigateurs et personnel de recherche
 - 1.1 <u>Promoteur-investigateur</u>. L'étude sera menée par le promoteurinvestigateur.
 - 1.2 <u>Obligations</u>. L'Établissement est responsable envers Pfizer d'assurer la conformité, par tous les membres du personnel qui participent à l'étude, y compris promoteur-investigateur et tous les entrepreneurs ou consultants, aux modalités de la présente entente.

2. <u>Protocole</u>

- 2.1 <u>Protocole</u>. L'étude sera menée conformément à un protocole développé par le promoteur-investigateur (« protocole »). L'approbation du protocole final par Pfizer est une condition au soutien de Pfizer en vertu de la présente entente.
- 2.2 <u>Modifications</u>. Si le promoteur-investigateur modifie le protocole définitif approuvé par Pfizer, il doit en informer Pfizer rapidement par écrit. La continuation du soutien accordé par Pfizer sera conditionnelle à l'examen et à l'acceptation par Pfizer des modifications apportées au protocole.

3. <u>Réalisation de l'étude</u>

- 3.1 <u>Parrainage</u>. Le promoteur-investigateur et l'Établissement reconnaissent que Pfizer n'est en aucune façon le « promoteur » et s'engagent à ne représenter en aucun temps Pfizer comme tel ou autrement auprès de tout tiers. Sauf disposition expresse dans la présente entente, Pfizer n'a aucune obligation ni responsabilité envers l'Établissement, le promoteurinvestigateur ou tout particulier qui participe à l'exécution de l'étude.
- 3.2 <u>Réglementation</u>. L'Établissement est seul responsable de tous les rapports de sécurité et de toutes les obligations réglementaires associés à la réalisation de l'étude.
- 3.3 <u>Normes</u>. Le promoteur-investigateur procédera à l'étude conformément au protocole, à la Conférence internationale sur l'harmonisation des bonnes pratiques cliniques (ICH GCP) – dans la mesure applicable à ce type d'étude –, et à toutes les lois applicables. promoteur-investigateur doit se conformer à toutes les exigences du comité d'éthique de l'Établissement (CEE) ou d'un comité d'éthique indépendant (CEI)

relativement aux études impliquant l'utilisation d'échantillons biologiques humains.

- 3.4 <u>Approbation du CEE ou d'un CEI</u>. Dans le cas où ce type d'étude l'exigerait, le promoteur-investigateur s'assurera que l'étude est approuvée par le CEE ou un CEI approprié et soumise à une surveillance continue par un tel CEE ou CEI. Si l'approbation du CEE ou d'un CEI est nécessaire, l'Établissement doit, comme condition au soutien de Pfizer, fournir à Pfizer la preuve documentaire de l'approbation initiale du protocole définitif par le CEE ou le CEI ainsi que des renouvellements annuels de cette approbation si de tels renouvellements sont nécessaires (voir l'annexe B, Exigences en matière de documentation). L'Établissement avisera Pfizer promptement de toute suspension ou de tout retrait de l'approbation par le CEE ou le CEI pendant la durée de la présente entente.
- 3.5 <u>Échantillons biologiques</u>. Cette étude en laboratoire impliquera l'utilisation d'échantillons biologiques fournis par l'Établissement.
 - Consentement. Le promoteur-investigateur doit a) obtenir le a. consentement éclairé des personnes desquelles les échantillons biologiques ont été obtenus (« donneurs d'échantillons ») conformément à la loi applicable, b) s'assurer que le consentement éclairé couvrant la recherche qui sera effectuée a déià été obtenu ou c) obtenir, auprès du CEE ou d'un CEI approprié, une dérogation au consentement éclairé pour l'utilisation des échantillons biologiques dans le cadre de l'étude. Le promoteur-investigateur doit également assurer la conformité aux lois applicables à l'égard de l'utilisation et de la divulgation de renseignements sur la santé relativement aux donneurs d'échantillons. Si un consentement éclairé est utilisé, le promoteur-investigateur doit informer les donneurs d'échantillons que Pfizer fournit un soutien à l'étude. Pfizer n'a aucune obligation de participer à la rédaction d'un document relatif au consentement éclairé ou à une demande de dérogation, ni d'examiner ou de commenter un tel document.
 - <u>Propriété et disposition</u>. Pfizer ne revendique aucun droit de propriété à l'égard des échantillons biologiques fournis pour l'étude par l'Établissement. L'Établissement est responsable de la disposition adéquate de tous les échantillons biologiques restants à la fin de l'étude.
- 3.6 <u>Aucune surveillance ou collecte de données</u>. Pfizer ne surveillera pas l'étude ni ne recevra de données de l'étude (selon la définition de l'article 5, Données de l'étude et résultats de l'étude).

- 3.7 <u>Durée de la réalisation de l'étude</u>. Le promoteur-investigateur prévoit achever l'étude (achèvement des procédures et de la portion collecte de données de l'étude) d'ici le 31 décembre 2018.
- 3.8 <u>Rapports de statut</u>. Le promoteur-investigateur doit fournir à Pfizer un rapport sur le statut de l'étude, dans le format demandé par Pfizer, au moins une fois par année pendant la durée de la présente entente, ou plus fréquemment si cela est indiqué à l'annexe A (Calendrier des paiements) ou si les deux parties en conviennent mutuellement. Chaque rapport de statut doit présenter les progrès de l'étude, les plans de publication, tout ajustement à la date d'achèvement estimative de l'étude, ainsi que toute autre information raisonnablement demandée par Pfizer.
- 4. <u>Soutien à un essai proposé par un investigateur</u>. Pfizer fournira un soutien financier à l'étude d'un montant de sept cent sept mille quatre-vingts dollars (707 080,00 \$ CA), conformément au calendrier présenté à l'annexe A, Calendrier des paiements. Ce financement constitue le soutien aux essais proposés par des investigateurs pour cette étude.
 - 4.1 <u>Base du soutien</u>. Ce soutien accordé à un essai proposé par un investigateur n'est conditionnel à aucune relation d'affaires préexistante ou future entre Pfizer et le promoteur-investigateur ou l'Établissement. Par ailleurs, il n'est conditionnel à aucune décision d'entreprise ou autre décision que le promoteur-investigateur ou l'Établissement aurait prise ou pourrait prendre relativement à Pfizer ou aux produits de Pfizer.
 - 4.2 <u>Présentation des documents requis</u>. Pfizer ne fournira aucun élément de soutien à l'essai proposé par un investigateur tant qu'elle n'aura pas reçu les documents nécessaires indiqués à l'annexe B, Exigences en matière de documentation.
 - 4.3 <u>Utilisation du soutien à un essai proposé par un investigateur</u>. Le promoteur-investigateur et l'Établissement utiliseront le soutien à l'essai proposé par un investigateur uniquement aux fins de l'étude. À la fin de l'étude, promoteur-investigateur doit confirmer par écrit que le soutien à l'essai proposé par un investigateur a été utilisé uniquement pour soutenir l'étude, en remplissant le formulaire *Certificat d'achèvement de l'étude* fourni par Pfizer.
 - 4.4 <u>Budget d'étude</u>. L'Établissement déclare que le budget d'étude qu'il a fourni et sur lequel est fondé le soutien à l'essai proposé par un investigateur reflète une estimation étayée de tous les fonds requis pour réaliser l'étude et faire rapport sur celle-ci, y compris les dépenses relatives à la publication des résultats de l'étude.
 - 4.5 <u>Taxes</u>.
 - (a) Les montants payables en vertu de la présente entente ne comprennent pas la taxe fédérale sur les produits et services ou la

taxe de vente harmonisée (« TPS/TVH »), la taxe de vente du Québec (« TVQ ») ou autres taxes semblables à la valeur ajoutée, à la consommation, de vente ou d'utilisation (collectivement, les « taxes »).

- (b) Il incombe à l'Établissement et au promoteur-investigateur de surveiller et d'examiner leur besoin, le cas échéant, de s'inscrire aux fins des taxes et de facturer, percevoir et remettre les taxes applicables.
- 4.5 <u>Divulgation par Pfizer</u>. Dans l'intérêt de la transparence en ce qui concerne ses relations financières avec les investigateurs et les sites d'étude ou pour assurer la conformité aux lois locales applicables, Pfizer peut divulguer publiquement le soutien qu'elle fournit en vertu de cette entente. Une telle divulgation par Pfizer peut identifier l'Établissement et promoteur-investigateur, mais doit différencier clairement les paiements ou autres transferts de valeur faits à des établissements de ceux faits à des particuliers.
- 5. <u>Données de l'étude et résultats de l'étude</u>. Aux fins de la présente entente, « données de l'étude » signifie les données brutes, non cumulatives, recueillies au cours de l'étude. « Résultats de l'étude » désigne les données cumulatives ou résumées de l'étude et les conclusions de celle-ci, qui seraient incluses dans un rapport d'étude ou une publication sur le sujet. Le promoteur-investigateur est libre de publier les résultats de l'étude, sous réserve des dispositions de l'article 8 (Publications) et le promoteur-investigateur ainsi que l'Établissement sont libres d'utiliser les résultats de l'étude à toute autre fin. L'Établissement possède les données de l'étude et est libre de les utiliser pour ses propres objectifs et programmes de recherche, de formation et de soins aux patients. Toutefois, compte tenu du soutien à l'essai proposé par un investigateur accordé par Pfizer, le promoteur-investigateur et l'Établissement ne doivent pas utiliser ni permettre à quiconque d'utiliser les données de l'étude pour l'avantage commercial de toute tierce partie.
- 6. <u>Rapport d'étude</u>. Dans les six mois suivant la fin de l'étude ou la résiliation de la présente entente, selon la première éventualité, le promoteur-investigateur fournira à Pfizer un rapport écrit sur les résultats de l'étude (« rapport d'étude »). Sauf disposition contraire convenue par écrit par les parties, le rapport d'étude peut être sous la forme d'un manuscrit pour publication (voir l'article 8, Publications). Si l'entente est résiliée avant l'échéance prévue, le rapport d'étude doit inclure, au minimum, les résultats de l'étude jusqu'à la date de résiliation.
- 7. <u>Confidentialité des données</u>. Dans le cadre de l'exécution de l'étude, le promoteur-investigateur et l'Établissement ne doivent traiter des renseignements qui concernent un particulier identifiable ou qui permettent d'identifier un particulier (« renseignements personnels ») que dans le but de réaliser l'étude et pour aucune autre fin. Le promoteur-investigateur et l'Établissement doivent prendre toutes les mesures techniques, physiques et organisationnelles

appropriées et nécessaires visant à prévenir le traitement ou l'accès non autorisés ou illicites à ces renseignements personnels, ainsi que la perte, la destruction ou la détérioration de ces renseignements. Plus particulièrement, et sans limiter ce qui précède, le promoteur-investigateur et l'Établissement doivent se conformer à toutes les lois et à tous les règlements applicables qui sont en vigueur à la date de la présente entente ou qui entrent en vigueur pendant qu'elle est en vigueur, concernant la protection des renseignements personnels et/ou la protection du droit à la vie privée des personnes (« lois sur la protection de la vie privée »).

À l'échéance ou à la résiliation de la présente entente, et par la suite, le promoteur-investigateur et l'Établissement traiteront les renseignements personnels directement ou indirectement liés à l'étude conformément à toutes les lois applicables sur la protection de la vie privée.

Dans le présent article 7, « traiter » englobe le fait de recueillir, de conserver, d'utiliser, de modifier, de divulguer, de céder ou de transférer les données.

- 8. <u>Publications</u>. Pfizer soutient l'exercice de la liberté universitaire et encourage l'Établissement à publier les résultats de l'étude, qu'ils soient ou non favorables à Pfizer ou à tout produit de Pfizer. Tel qu'il est utilisé dans la présente entente, le terme « publication » comprend les articles de revue, les résumés, les présentations ou autres modes de divulgation publique qui font rapport des résultats de l'étude.
 - 8.1 <u>Examen préalable à la publication</u>. Le promoteur-investigateur ou d'autres auteurs appropriés de l'Établissement (« auteurs ») fourniront à Pfizer une occasion (au moins 60 jours avant la présentation ou tout autre mode de divulgation publique) d'examiner de manière prospective toute publication proposée. Pfizer fera cet examen afin de déceler toute invention apparentée non protégée (voir l'article 9, Inventions) et pourra fournir des observations sur le contenu. Les auteurs peuvent tenir compte de ces observations de bonne foi, mais n'ont aucune obligation d'intégrer toute suggestion faite par Pfizer.
 - 8.2 <u>Normes</u>. Pour toutes les publications, les auteurs pourront se conformer aux lignes directrices relatives à la paternité dans les *Recommandations pour la conduite, la présentation, la rédaction et la publication des travaux de recherche soumis à des revues médicales* <u>http://www.icmje.org/recommendations/translations/french2014.pdf</u>) établies par l'International Committee of Medical Journal Editors.
 - 8.3 <u>Divulgation du soutien</u>. Les auteurs doivent divulguer dans toute publication le soutien à l'étude accordé par Pfizer.
 - 8.4 <u>Publication de résumés</u>. Le promoteur-investigateur et l'Établissement reconnaissent par les présentes que Pfizer se réserve le droit d'utiliser, de reproduire, de publier, de rééditer et de compiler tout résumé lié à l'étude et aux données de l'étude, ou à une partie de celles-ci, tout

comme Pfizer, à sa seule discrétion, peut en décider, à condition que Pfizer ait obtenu l'autorisation pertinente auprès de l'éditeur concerné, le cas échéant.

- <u>Inventions</u>. Les droits à toute invention ou découverte, brevetable ou non, résultant de la réalisation de l'étude (« invention ») seront déterminés conformément à la présente disposition.
 - 9.1 <u>Propriété</u>. Toute invention réalisée uniquement par un ou plusieurs employés ou entrepreneurs (collectivement, le « personnel ») de l'Établissement sera détenue exclusivement par l'Établissement. Toute invention réalisée uniquement par le personnel de Pfizer sera détenue exclusivement par Pfizer. Les inventions réalisées conjointement par le personnel de l'Établissement et le personnel de Pfizer seront détenues conjointement par l'Établissement et Pfizer. L'Établissement et Pfizer conserveront chacun leur droit d'exercer et d'exploiter leur participation indivise dans toute invention détenue conjointement sans devoir obtenir d'autorisation et sans devoir rendre des comptes à leur cotitulaire.
 - 9.2 <u>Inventions liées à des produits</u>. « Invention liée à un produit » désigne toute invention (selon la définition à l'article 9 ci-dessus) qui englobe le traitement par un produit de Pfizer ou l'administration, la fabrication, la forme, la formulation ou l'utilisation d'un produit de Pfizer (y compris l'utilisation en combinaison avec d'autres produits ou agents), ou qui constitue un biomarqueur utile dans la sélection des patients pour le traitement par le produit de Pfizer ou est reliée à un tel biomarqueur.
 - 9.3 <u>Licence non exclusive accordée à Pfizer</u>. L'Établissement accorde à Pfizer une licence intégralement payée, perpétuelle, internationale, non exclusive et libre de redevances à l'égard de toutes fins relatives à chaque invention liée à un produit détenue par l'Établissement. Une telle licence non exclusive comprendra le droit de 1) concéder une sous-licence aux sociétés affiliées (voir la définition au paragraphe 11.3, Société affiliée), aux entrepreneurs ou aux collaborateurs de Pfizer travaillant au profit de Pfizer ou en lien avec une collaboration de produit ou de service de Pfizer ou d'une société affiliée de Pfizer et 2) concéder une sous-licence ou attribuer à un ayant droit une partie ou la totalité des droits détenus sur un produit de Pfizer auquel l'invention liée est pertinente.
 - 9.4 <u>Option de licence exclusive</u>. L'Établissement accorde par ailleurs à Pfizer une option lui permettant d'obtenir une licence mondiale exclusive pour toutes fins, assortie des pleins droits de sous-licence et d'attribution, pour chaque invention liée à un produit détenue en totalité ou en partie par l'Établissement, selon des modalités à négocier de bonne foi entre les parties.

10. <u>Résiliation</u>

- 10.1 <u>Événements entraînant la résiliation</u>. La résiliation de cette entente sera déclenchée par la première des éventualités suivantes.
 - <u>Achèvement des obligations aux termes de l'entente</u>. L'entente prendra fin lorsque l'étude est terminée, ce qui signifie à l'achèvement de toutes les activités prescrites par le protocole (« l'achèvement de l'étude ») et lorsque les parties ont reçu tous les produits livrables et les paiements dus.
 - <u>Résiliation hâtive par l'Établissement</u>. Si l'Établissement met fin à l'étude avant l'échéance prévue, pour quelque raison, l'Établissement peut résilier l'entente moyennant un préavis à Pfizer.
 - <u>Résiliation hâtive par Pfizer</u>. Pfizer peut résilier l'entente avant l'échéance prévue dans l'une ou l'autre des circonstances suivantes :
 - 1) Le protocole est modifié d'une façon inacceptable pour Pfizer (voir le paragraphe 2.2, Modifications).
 - La réalisation de l'étude n'est pas achevée dans les six mois suivant la date cible (voir le paragraphe 3.7, Durée de la réalisation de l'étude).
 - 3) L'étude ne démarre pas dans les six mois suivant la date d'entrée en vigueur de la présente entente.
 - 4) Les progrès de l'étude sont considérablement plus lents que ce qui est décrit dans le protocole ou la proposition, ou que ce qui est nécessaire pour achever l'étude pour la date cible.
 - 5) La conception ou les objectifs de l'étude ne sont plus pertinents du point de vue scientifique.
 - 6) L'Établissement ou le promoteur-investigateur ne s'est pas conformé aux lois locales ou aux dispositions de l'article 12 (Lutte contre la corruption) de la présente entente, y compris concernant les circonstances où Pfizer est informée 1) que des paiements irréguliers sont faits ou ont été faits à des représentants de l'État (selon la définition à l'annexe D) ou à toute autre personne par l'Établissement, le promoteur-investigateur ou toute personne qui agit au nom de l'Établissement ou du promoteur-investigateur relativement à l'étude ou à cette entente ou 2) que l'Établissement, le promoteurinvestigateur ou toute personne qui agit au nom de l'Établissement ou du promoteur-investigateur relativement à l'étude ou à cette entente a accepté un paiement, un article ou un avantage, quelle qu'en soit la valeur, comme

incitation indue à attribuer, obtenir ou conserver un contrat ou pour obtenir ou accorder autrement un avantage commercial indu de la part ou à l'intention de toute autre personne ou entité.

- d. <u>Résiliation motivée</u>. L'une ou l'autre des parties peut résilier l'entente immédiatement par l'envoi d'un avis de résiliation motivée, y compris, mais sans s'y limiter, à l'égard de toute violation substantielle sans remédiation des modalités de cette entente par l'autre partie. Un autre motif valable aux termes de cette disposition pourrait être le défaut, par l'Établissement, de respecter ou une intention démontrée qu'il aurait de ne pas respecter les garanties énoncées à l'article 12 (Lutte contre la corruption).
- 10.2 <u>Date d'entrée en vigueur de la résiliation</u>. Si la résiliation est déclenchée par un des événements décrits aux alinéas 10.1.b ou c ci-dessus, la résiliation sera effective après l'achèvement par les deux parties de toute obligation restante applicable qui est stipulée dans l'entente.
- 10.3 <u>Paiement en cas de résiliation hâtive</u>. Les modalités du présent paragraphe 10.3, Paiement en cas de résiliation hâtive, s'appliquent uniquement si l'entente est résiliée avant la date d'échéance prévue pour une raison autre que pour un motif valable (voir l'alinéa 10.1.d, Résiliation motivée). En cas de résiliation hâtive, Pfizer paiera une portion calculée au prorata du montant de financement total accordé pour l'essai proposé par un investigateur, moins les paiements déjà effectués. L'Établissement remboursera à Pfizer tout financement déjà reçu en sus de ce montant calculé, sauf dans la mesure où ces fonds ont déjà été utilisés ou affectés sans possibilité d'annulation, d'une manière compatible avec le budget d'étude sur laquelle le soutien à l'essai proposé par un investigateur est fondé ou selon tout mode approuvé de manière prospective par Pfizer.
- 10.4 <u>Rapprochement des comptes à la fin de l'étude</u>. À la fin de l'étude, les parties coopéreront pour effectuer un rapprochement financier afin de confirmer la concordance entre le total des paiements d'étape par Pfizer et les étapes et les produits livrables qui étaient convenus. Les parties conviennent de procéder à un rajustement (soit un remboursement ou un paiement supplémentaire) si cette analyse révèle que cela est justifié.

11. Autres dispositions

- 11.1 <u>Indemnisation</u>. L'étude n'est pas conçue, parrainée ou gérée par Pfizer et Pfizer ne fournit aucune indemnisation de quelque nature que ce soit.
- 11.2 <u>Pertinence</u>. L'Établissement atteste que lui-même et le promoteurinvestigateur sont agréés, enregistrés ou autrement qualifiés et possèdent les qualités requises en vertu des lois locales pour agir à titre

de promoteur de l'étude clinique, de site d'étude ou d'investigateur, selon le cas. L'Établissement atteste également qu'aucune loi ou autre obligation ne lui interdit de mener l'étude et de conclure la présente entente. L'Établissement atteste par ailleurs que ni lui ni le promoteurinvestigateur ne sont radiés en vertu des paragraphes 306(a) ou (b) de la *US Federal Food, Drug, and Cosmetic Act* et qu'ils n'ont pas utilisé ni n'utiliseront à aucun titre des services d'une personne radiée en vertu de cette loi en ce qui a trait aux activités à exécuter au titre de la présente entente.

- 11.3 <u>Société affiliée</u>. Tel qu'il est utilisé dans la présente entente, le terme « société affiliée » désigne toute entité qui contrôle directement ou indirectement la partie nommée, ou qui est contrôlée par celle-ci ou soumise à un contrôle commun au même titre que celle-ci.
- 11.4 Loi. Tel qu'il est utilisé dans le présent accord, le terme « loi » (ou « lois ») doit être compris comme englobant toutes les règles – locales, nationales, régionales ou internationales – ayant une force légale contraignante et obligatoire et qui sont prescrites, reconnues et appliquées par une autorité gouvernementale de contrôle. Les lois peuvent inclure, sans toutefois s'y limiter, les statuts, les règlements administratifs, les traités et les décrets.
- 11.5 <u>Droit applicable</u>. La présente entente est régie et interprétée conformément aux lois de la province de Québec, sans référence à ses règles en matière de divergence de lois, et aux lois du Canada applicables aux présentes. Tout litige découlant de la présente entente sera porté devant les tribunaux de la province de Québec, qui auront compétence en la matière, et chaque partie se soumettra irrévocablement à la compétence de ces tribunaux.
- 11.6 <u>Données personnelles</u>. Les renseignements qui pourraient être utilisés comme tels ou en association avec d'autres renseignements disponibles pour identifier une personne précise sont considérés comme des « données personnelles ».
- 11.7 <u>Traitement des données personnelles par Pfizer</u>. Pfizer utilise des systèmes électroniques mondiaux pour le traitement de certains renseignements ayant trait aux études fondées sur des essais proposés par des investigateurs. Ces systèmes peuvent comporter certaines données personnelles se rapportant aux personnes qui participent à l'étude ou qui effectuent des travaux dans le cadre de l'étude et que l'Établissement fournit à Pfizer. Les données personnelles utilisées dans ces systèmes comprennent généralement des renseignements tels que le nom, le domaine de spécialisation et les coordonnées des personnes. Pfizer peut transférer ces données personnelles à ses sociétés affiliées, à ses partenaires de recherche ou commerciaux, à ses fournisseurs de services contractuels ou à ses consultants, ou encore, aux autorités gouvernementales compétentes. Ces destinataires peuvent être situés à

l'extérieur du pays dans lequel l'étude a été effectuée, y compris aux États-Unis.

- 11.8 Attribution et délégation
 - a. <u>Par l'Établissement.</u> L'Établissement ne peut attribuer des droits ni déléguer ou sous-traiter (« déléguer ») des obligations en vertu de la présente entente sans l'autorisation écrite de Pfizer. Si Pfizer autorise la délégation d'obligations, l'Établissement demeure responsable envers Pfizer de l'exécution de ces obligations.
 - b. <u>Par Pfizer</u>. Pfizer peut attribuer librement et déléguer des droits et obligations liés à l'étude à une société affiliée de Pfizer ou à un ayant droit relativement à un produit ou à un domaine de recherche d'intérêt de Pfizer auquel l'étude se rapporte. Moyennant un préavis de la part de l'Établissement, Pfizer peut également attribuer librement des droits et déléguer des obligations à un partenaire de recherche ou commercial ou à un fournisseur de services contractuels. Pfizer ne peut autrement céder ses droits ou déléguer ses obligations en vertu de la présente entente sans l'autorisation écrite de l'Établissement. Si Pfizer délègue des obligations, Pfizer demeure responsable envers l'Établissement de l'exécution de ces obligations.
- 11.9 <u>Intégralité de l'entente</u>. La présente entente (y compris les annexes) ainsi que le protocole approuvé par Pfizer auquel il est fait référence représentent l'entente complète entre les parties relativement à ce sujet. Cette entente remplace toute entente antérieure entre les parties (verbale ou écrite) relative à cette étude, à l'exception de toute obligation qui, par les modalités d'une telle entente, survivrait indépendamment de la présente entente.
- 11.10 <u>Divergence avec les annexes ou le protocole</u>. En cas de divergence entre la présente entente et l'une ou l'autre de ses annexes, les modalités de cette entente prévaudront. En cas de divergence entre la présente entente et le protocole, l'entente prévaudra, sauf en ce qui a trait aux questions de nature médicale, scientifique ou clinique relatives à la réalisation de l'étude, pour lesquelles le protocole prévaudra.
- 11.11 <u>Besoins de financement</u>. Pfizer ne versera aucun paiement en sus du financement énoncé à l'annexe A dans le cadre de la présente entente, à moins qu'elle n'ait d'abord approuvé ce paiement par écrit. Toutes les factures soumises à Pfizer par l'Établissement en vertu de cette entente doivent décrire en détail raisonnablement suffisant l'objet de la demande de paiement.

- 11.12 <u>Droit de vérification</u>. Pfizer a le droit de prendre toutes les mesures raisonnables pour s'assurer que chaque paiement qu'elle effectue est utilisé correctement et légitimement. Sur demande par Pfizer, l'Établissement doit :
 - a. fournir la documentation des débours, dépenses ou frais pour lesquels le financement de Pfizer a été utilisé;
 - b. permettre, pendant la durée de l'entente et pour une période de trois ans après le versement du paiement final en vertu de l'entente, que les vérificateurs internes et externes de Pfizer aient accès à tous les livres, documents, pièces et dossiers pertinents de l'Établissement et du promoteur-investigateur relativement aux transactions liées à l'entente. Lorsque l'entente comporte des études cliniques, des mesures de protection acceptables seront en place pour protéger la confidentialité des sujets d'étude.
- 11.13 <u>Survie</u>. Les paragraphes 1.1 (Investigateurs et personnel de recherche),
 4.3 (Utilisation du soutien à un essai proposé par un investigateur), les articles 5 (Données de l'étude et résultats de l'étude), 6 (Rapport d'étude), 7 (Confidentialité des données), 8 (Publications) et 10 (Résiliation), le paragraphe 11.1 (Indemnisation) et l'article 12 (Lutte contre la corruption) survivront à l'expiration ou à la résiliation de la présente entente pour quelque raison que ce soit.
- 11.14 <u>Communications électroniques</u>. L'Établissement et le promoteurinvestigateur acceptent de recevoir des communications électroniques de Pfizer dans le cadre de la présente entente et de toutes transactions futures avec Pfizer. L'Établissement et le promoteur-investigateur peuvent retirer leur consentement à de telles communications en fournissant un avis conformément à l'article 13 (Avis).

12. Lutte contre la corruption

- 12.1 <u>Définitions</u>
 - a. <u>État</u>. Comme utilisé dans la présente entente, le terme « État » comprend tous les niveaux et paliers de l'administration publique (niveau local, régional ou national, et palier administratif, législatif ou exécutif).
 - b. <u>Représentant de l'État</u>. Le terme « représentant de l'État » est défini à l'annexe D.
- 12.1 Garanties. L'Établissement garantit ce qui suit à Pfizer :
 - a. Le soutien financier de Pfizer n'incitera pas l'Établissement, le promoteur-investigateur et, à leur connaissance, toute personne affiliée à l'Établissement ou au promoteur-investigateur, à faire

quoi que ce soit qui aurait pour effet que Pfizer obtienne ou conserve indûment un contrat ou obtienne indûment un avantage commercial.

- b. Ni l'Établissement ni le promoteur-investigateur ni, à leur connaissance, toute personne affiliée à l'Établissement, au promoteur-investigateur ou à ce soutien n'utilisera une quelconque partie du soutien financier de Pfizer pour offrir ou verser, directement ou indirectement, de l'argent ou tout objet de valeur, dans un effort visant à influencer un représentant de l'État ou toute autre personne pour que Pfizer obtienne ou conserve indûment un contrat ou obtienne indûment un avantage commercial, et ni l'un ni l'autre n'a accepté ou n'acceptera à l'avenir, un tel paiement.
- c. Pfizer sera en droit de révoquer ou de suspendre tout soutien financier si elle apprend que l'Établissement ou le promoteurinvestigateur, ou toute personne affiliée à l'Établissement ou au promoteur-investigateur ou à ce soutien, a utilisé ou a l'intention d'utiliser une quelconque partie du soutien pour chercher à influencer indûment un représentant de l'État ou toute autre personne dans le but d'obtenir ou de conserver un contrat ou d'obtenir un avantage commercial.
- d. Pfizer peut en tout temps divulguer publiquement vous avoir offert un soutien financier, et indiquer notamment le montant d'un tel soutien.
- 12.2 <u>Non-conformité</u>. Le défaut de respecter, ou une intention démontrée de ne pas respecter, l'une ou l'autre des garanties énoncées au paragraphe 12.2 ci-dessus constitueront une cause suffisante pour que Pfizer résilie immédiatement cette entente conformément à l'alinéa 10.1.d^{*} Résiliation motivée. En pareilles circonstances, Pfizer n'est pas dans l'obligation d'offrir à l'Établissement une occasion de remédier à la situation ou de lui verser tout autre paiement au moment de la résiliation, y compris tout paiement pour des engagements non résiliables pris par l'Établissement relativement à l'étude.
- 13 <u>Avis.</u> Tout avis qu'une partie désire donner ou signifier à une autre partie doit être fait par écrit et peut être remis en mains propres, envoyé par courrier recommandé prépayé avec demande d'accusé de réception, ou envoyé par télécopieur aux coordonnées suivantes :

Si à destination de Pfizer :

PFIZER CANADA INC. 17300, autoroute Transcanadienne Kirkland (Québec) H9J 2M5

À l'attention de Stéphane Dion Télécopieur : 514-693-4715 Courriel : stephan.dion@pfizer.com

Envoyer une copie supplémentaire de chaque avis à l'attention de la Division des affaires juridiques de Pfizer, à l'adresse précitée et au numéro de télécopieur 514-426-7599.

Si à destination de l'Établissement :

Laboratoire de santé publique du Québec (LSPQ) 20045, chemin Sainte-Marie, Sainte-Anne-de-Bellevue (Québec) H9X 3R5 Dr Jean Longton À l'attention de la D^{re} Cécile Tremblay BU 2015/11/16 Télécopieur : 514-457-6346 Courriel : xxx

Si à l'intention du promoteur-investigateur :

Brigitte Lefebvre, Ph. D. Laboratoire de santé publique du Québec (LSPQ) 20045, chemin Sainte-Marie, Sainte-Anne-de-Bellevue (Québec) H9X 3R5

Télécopieur : 514-457-6346 Courriel : xxx

ou à toute autre adresse que la partie à laquelle l'avis est destiné a communiquée aux autres parties au moyen d'un avis qui leur a été donné ou signifié de la façon décrite dans cet article. Dans le cas d'une remise en mains propres ou d'une transmission par télécopieur, l'avis sera réputé avoir été donné au moment de sa réception par le destinataire et, dans le cas d'un envoi postal, l'avis sera réputé avoir été donné sept jours après avoir son envoi.
Accepté et approuvé par :

PFIZER CANADA INC.

Par :	
Nom :	Vratislav Hadrava
Titre :	Vice-président – Affaires médicales, Canada
Date :	04-101-2015
Par :	
Nom :	Jelena Vojicic
Titre :	Gestionnaire en chef – Vaccins, Canada
Date :	Nov 04-2015
ÉTABLI Par :	SSEMENT
Nom :	Dre JOCELYNE SAUVE Dre Cécile Tremblay- BL 2015 / 11/16
Titre :	Vice présidente - affaires scientifiques
Date :	2015 - 11-20
PROMO	TEUR-INVESTIGATEUR
Par:	Signature

Nom : D^{re} Brigitte Lefebvre

Date : ______/11

Date de la version modèle : Octobre 2014

Brigitte Lefebvre, Ph. D. IIR WI203144 07 oct. 2015

Annexe A CALENDRIER DES PAIEMENTS

Financement

Le financement total approuvé pour l'étude qui sera effectuée par le promoteurinvestigateur est de **SEPT CENT SEPT MILLE QUATRE-VINGTS DOLLARS** (707 080,00 \$CA). Ce montant inclut tous frais généraux de l'Établissement et ne comprend pas les taxes applicables.

Calendrier des paiements de financement

Étapes	Montant du paiement
Paiement initial – dès la réception par Pfizer de l'entente dûment signée (voir la remarque ci-dessous)	231 295,00 \$
Paiement provisoire – Après réception et examen d'une mise à jour de statut de l'étude en août 2016	234 180,00 \$
Paiement final – dès la réception par Pfizer des résultats de l'étude (voir la remarque ci- dessous)	241 605,00 \$

Avis d'étapes et paiements : Pour demander un paiement, aviser Pfizer par écrit lorsque chacune des étapes a été franchie. Référencer le numéro de suivi de Pfizer dans chaque demande de paiement.

Renseignements sur le bénéficiaire

Nom du bénéficiaire (tel qu'il figurera sur le chèque) :

Institut national de santé publique du Québec (INSPQ)

Adresse du bénéficiaire :

20045, chemin Sainte-Marie, Sainte-Anne-de-Bellevue (Québec) H9X 3R5

À l'attention de :

Laboratoire de santé publique du Québec (LSPQ)

Paiement initial. Pfizer ne versera aucun paiement initial tant qu'elle n'aura pas reçu 1) une copie signée de l'accord et 2) les documents nécessaires indiqués à l'annexe B, Exigences en matière de documentation.

Paiement final. Pfizer versera le paiement final uniquement après la réception du rapport de l'étude et l'achèvement de toutes obligations restantes applicables dans le cadre de l'entente.

Annexe B EXIGENCES EN MATIÈRE DE DOCUMENTATION

Pfizer		STUDY DOCUMENT REQUIREMENTS FORM	
STUDY INFORMATIC	N		
PRINCIPAL INVESTIGATOR	Dr. Brigitte	Lefebvre	
PFIZER INSPIIRE NO.	WI203144	INSTITUTIONAL REFERENCE NUMBER	
PROTOCOL TITLE	Serotype mo population in	nitoring of S. pneumoniae invasive 1 the province of Quebec_ a 3 year	strains in adult s study evaluation.
DOCUMENTATION R	EQUIREMENTS		
MATERIALS ENCLOSED	WITH THIS PACKET:	(DELETE ANY ITEMS BELOW THAT DO NOT	APPLY)
Site Information	on Sheet (agreemen	t information form)	
Drug Supply R	equest Form		
Reportable Eve	ent Fax Cover Sheet		
Pfizer Safety R	eporting Reference N	Aanual for IIR studies	
Pfizer IIR Adve	rse Event Report For	m and IIR Adverse Event Report Form Com	oletion Instructions
🔲 Exposure Duri	ng Pregnancy (EDP) S	upplemental Form	
Product inform	nation (document or	reference)	
🔲 IRS Web site a	ddress to download I	Form W-9 (US/Puerto Rico only)	al i selet errortation ar a
PRINCIPAL INVESTIGA	TOR MUST PROVIDE	TO PFIZER: (ONLY BOXES CHECKED BELOV	N
Documents required to	o generate an IIR Agr	eement	
🔀 Completed (a	greement information	on form)	
Completed IRS	Form W-9 (US/Puer	to Rico only for payee entity)	
Documents required to	o be submitted prior	to receiving monetary support and/or dru	g supplies
Completed Site	e Information Sheet (Drug Supply Information and/or Financial I	nformation Tab[s])
🔀 Executed IIR a	greement		
Final study pro protocol as re	otocol (for a study wil quired for qualified p	th sites in the EU, the principal investigator erson [QP] release of drug supplies)	must sign the final study
IRB/IEC approv	/al letters (initial app	roval and annual renewals, as applicable)	
Regulatory res	ponse		
For US studies	:		
FDA IND n DEA numb	esponse (IND numbe per for controlled sub	r or exemption – <i>may not apply to all consu</i> Istances	mer products)
For EU studies	:		
Approved	clinical trial applicati	on (CTA) in English (as required for QP relea	ase)
🗌 Submissio	n letter for the CTA		
Submissio	n letter for the CTA on-EU studies:		

PFIZER CONFIDENTIAL Page 1 of 3

11220

STUDY DOCUMENT REQUIREMENTS FORM

Site Information Sheet / agreement information form)

The information requested on the *Site Information Sheet /Agreement information form* is critical to Pfizer in order to develop an agreement, to reduce the agreement's review time, and to ensure that monetary support is sent to the appropriate payee or drug supply is sent to the appropriate address. Withholding or delaying Pfizer's receipt of this form will significantly delay the contracting process for the approved research.

Final Protocol and Amendments

Pfizer will not provide support to an IIR study until after receipt of the final study protocol. If the research described in the final protocol is materially different from that in the approved proposal, then Pfizer may choose to modify or withhold its support.

As indicated in the agreement, the principal investigator must also promptly provide Pfizer with any amendments to the Pfizerapproved final study protocol. Continuation of support by Pfizer for an IIR study will be contingent on Pfizer's review and acceptance of these changes.

For studies with sites in the EU where drug support is being requested, the final study protocol must be signed by the principal investigator and is required for QP release of drug supplies.

Institutional Review Board (IRB)/Independent Ethics Committee (IEC) Documents

For studies that require IRB/IEC approval, Pfizer will only provide support for an IIR study after receipt of a copy of the IRB/IEC approval letter.

Continuation of support by Pfizer requires timely submission of a copy of IRB/IEC renewal documentation subsequent to the original IRB/IEC approval (as required per local regulations).

Regulatory Response

<u>US Clinical Studies: FDA IND Response or IND Exemption Documentation.</u> For an interventional clinical study involving a Pfizer drug, an investigational new drug (IND) application may need to be filed with the U.S. Food and Drug Administration (FDA). Please review IND requirements under 21 CFR 312 (available at http://www.fda.gov) to determine whether an IND is required.

For this type of study, Pfizer will not provide any IIR support until after receipt of documentation that an IND has been filed or that the study is exempt from an IND filing under 21 CFR 312.2(b)(1).

European Union Clinical Studies. For studies for which conduct under a clinical trial application (CTA) is required, Pfizer will not provide any IIR support until after receipt of a copy of the submission letter to the CTA, in English.

If Pfizer will provide packaged and labeled Pfizer product, then Pfizer must receive a copy of the approved CTA, with Section 4.2 (IMPD or Letter of Access from Pfizer) and Section D (in its entirety) must be translated in English, before Pfizer can provide QP release of product. For more information regarding CTAs, please consult http://eudract.emea.europa.eu/document.html.

Should your local regulatory authority require documentation from Pfizer, please contact your IIR manager for assistance.

Non-US/Non-EU Studies. Should your local regulatory authority require documentation from Pfizer, please contact your IIR manager for assistance.

Investigator-Initiated Research Agreement

Pfizer will provide the principal investigator or the contracting office with an IIR agreement that documents the terms under which Pfizer will provide the research grant. Development of the agreement is based upon information you have supplied on the enclosed forms.

Drug Supply Request Form

PFIZER CONFIDENTIAL Page 2 of 3

STUDY DOCUMENT REQUIREMENTS FORM

If Pfizer has agreed to supply drug, then the Drug Supply Request Form can be used to communicate your clinical supply needs throughout the course of the IIR study. Pfizer will not ship any clinical supplies until all required documents have been received and an IIR agreement has been executed.

<u>NOTE</u>: Availability of drug may take between eight weeks and twelve months, depending upon the product and its packaging and labeling requirements. Contact the appropriate IIR manager to determine available quantities of drug and timelines for shipment.

For Oncology Studies Conducted in the United States. If Pfizer is not providing clinical supplies for this study, then Pfizer cannot be held responsible for drug cost reimbursement. For assistance with third-party reimbursement procedures and indigent patients, contact FirstRESOURCE, Pfizer Oncology's Reimbursement and Patient Assistance Program, at 877-744-5675 prior to initiating therapy.

IRS Form W-9

Pfizer requires that all grant recipients based in the U.S. or Puerto Rico who receive monetary support complete and submit IRS *Form W-9*. This form shall be completed for the entity which will be receiving the grant payment(s). Please verify with your grants office that the name of the payee is correct and that it is the legal entity name related to the tax identification number. The latest version of *Form W-9* may be downloaded from the IRS Web site from: http://www.irs.gov/pub/irs-pdf/fw9.pdf.

Product Information

Pfizer is required to provide relevant and current scientific information about the investigational product to the investigator. This may be accomplished by supplying one of the following Pfizer-approved documents to the investigator: Investigator Brochure (IB), package insert (PI), or local product document (LPD).

Safety Reporting

<u>Safety Reporting Reference Manual for IIR Studies with Pfizer Products.</u> Detailed information regarding a principal investigator's (or investigators') adverse event reporting responsibilities for a Pfizer-supported IIR study can be found in the accompanying training manual. Please read through this document carefully. Principal investigators must understand and fully comply with the adverse event reporting requirements of their studies.

NOTE: Reporting an adverse event to Pfizer does not relieve the institution of its responsibility to report the event to the FDA or to the local regulatory authorities that govern that institution.

<u>IIR SAE Form and IIR SAE Report Form Completion Instructions.</u> For those studies where the principal investigator is required to submit reportable events (AEs and SAEs) to Pfizer, the investigator may use the *Pfizer IIR SAE/Adverse Event Report Form* to submit the event. Instructions for completion will also be provided.

<u>Reportable Event Fax Cover Sheet</u>. For those studies where the principal investigator is required to report adverse events and other reportable events to Pfizer, the investigator must use the attached *Reportable Event Fax Cover Sheet* along with the Pfizer-approved *Adverse Event Report Form*.

PFIZER CONFIDENTIAL Page 3 of 3

Annexe C Protocole

1

Serotype monitoring of *S. pneumoniae* invasive strains in adult population in the province of Quebec: a 3 years study evaluation

Principal Investigator

Brigitte Lefebvre, Ph. D. Microbiologist, Laboratoire de santé publique du Québec

Co-Pl

Cécile Tremblay, MD, Pfizer/University of Montreal Chair on HIV Translational Research, University of Montreal.

Director, Laboratoire de santé publique du Québec

Background

Streptococcus pneumoniae is responsible for various infections such as pneumonia, otitis, sinusitis, peritonitis, endocarditis and meningitis⁽¹⁾. The incidence of invasive *S. pneumoniae* is often used as an indicator of the burden of pneumococcal disease. Virulence and invasiveness varies among serotypes. In *S. pneumoniae*, several virulence factors are known; among these, the *cps* locus encoded capsule is a crucial one, as the prime target for vaccine development. Although several vaccines (PCV-7, PCV-10, PCV-13 and PCV-23) with different coverage have been developed against *S. pneumoniae*, invasive pneumococcal disease remains a public health concern as vaccine replacement phenomenon has been observed⁽²⁾.

In December 2004, PCV-7 vaccination was implemented free to all newborns in Quebec, using a 3-dose schedule (2, 4 and 12 months). Simultaneously, the vaccine could be offered free of charge to all children under the age of 5, during routine visits. In 2008, a new PCV-10 containing 3 serotypes not included in PCV-7 vaccine was licensed in Canada. It was introduced in Quebec in children in the summer of 2009. In 2009, PCV-13 vaccine was approved in Canada. It was introduced in the Quebec immunization program in January 2011 and replaced PCV-10.

The introduction of PCV-7 had not only an important impact on the number and the diversity of strains isolated from children under 5 years of age, but the impact was also observed in individuals \geq 5 year old. Thus, the proportion of serotypes included in PCV-7 has dramatically declined since 2005. However, there was an increase in the proportion of serotypes 7F and 19A which are not included in PCV-7 and an increase of non-vaccine serotypes was observed. In 2013, a decrease in the frequency of 7F and 19A serotypes in individuals \geq 5 year old was observed. However, the number of circulating serotypes not included in the PCV-7, PCV-10 and PCV-13 is increasing.

Thus, sustained laboratory monitoring is essential because it allows the study of evolution of circulating serotypes as well as antibiotic resistance patterns, two crucial parameters for planning immunization programs, the choice of vaccines and the development of treatment guidelines. Analysis of invasive strains allows for the study of serotypes distribution and antibiotic susceptibility patterns of strains responsible for the most severe forms of pneumococcal disease. Monitoring of circulating serotypes is essential to assess the impact of vaccination programs of the province of Quebec.

In 1996, the Public Health Laboratory of Quebec (LSPQ) in collaboration with hospital laboratories established a laboratory surveillance program of *S. pneumoniae* invasive strains. The program's objectives were to study the serotype distribution circulating in Quebec and establish their antibiotic susceptibility profiles. This program was based on the collection of strains from sentinel laboratories. In 2005, in order to assess the impact of the universal immunization program against *S. pneumoniae* in

children, the program was expanded to all invasive strains of *S. pneumoniae* isolated from children under 5 years of age.

This monitoring program has kept track of the evolution, in Quebec children, of various serotypes and resistance in connection with the introduction of the PCV-13 vaccine in 2011 and more specifically allows for the measure of its impact on the prevalence of serotypes 7F and 19A, two serotypes highly prevalent in Quebec. Currently, the provincial surveillance program is limited to strains collected in children less than 5 years of age and to adult strains from sentinel laboratories which represent less than 25% of the total invasive strains in the adult population. Therefore, we may be underestimating the diversity of circulating strains especially in areas not represented in the sentinel program and may not capture adequately seasonal variation. Two years ago, we proposed, a study evaluating the benefits of acquiring data on all invasive strains isolated in patients (\geq 5 years old) of the province of Quebec compared to sentinel sites. This study was launched in August 2013, with the financial support of Pfizer. Preliminary data from the first 18 months of extended surveillance indicate that some emerging serotypes may not be fully captured by the sentinel sites, although these observations need to be evaluated by longer follow-up.

Preliminary data from surveillance of invasive S. pneumoniae in individuals ≥ 5 years old

After 18 months of extended surveillance, we have identified a higher proportion of two serotypes, the 6A and 15A, which had not previously been identified with the sentinel sites surveillance program. Serotype 6A is included in the currently used PCV-13 vaccine and serotype 15A is not included in this vaccine and exhibits multi-resistance. A recent paper from Israels howed a similar increase of 15A serotype among adult invasive pneumococcal disease⁽²⁾. Emergence of serogroup 15 was also described by Liyanapathirana *et al.*⁽³⁾ in nasopharyngeal carriage of hospitalized children. Furthermore, our data analysis revealed an overrepresentation of some serotypes when only sentinel data are analyzed. The clinical significance of these serotypes is not yet defined. However, this supports the necessity to expand our broadened monitoring over a longer period of time to evaluate the establishment of these serotypes into Quebec's ecology and their relevance for vaccine development.

Before the beginning of our study in 2013, reporting of data was available in 3 formats: i) The annual provincial aggregated data generally available one year after data collection⁽⁴⁾; ii) The monthly LSPQ StatLabo report providing aggregated data with a 2 months delay⁽⁵⁾ iii) Individual reports for each strain sent to participating laboratories as well as public health stakeholders, up to 4 months after strain reception. As part of the current study, we were able to make available in real time information on circulating serotypes by publishing a monthly report including all serotypes identified, classified by age groups in the bulletin StatLabo (Fig. 1.).

We propose to continue our study for another three years to allow for a full characterization of circulating serotypes including clustering in certain geographical areas or seasonal variation, to establish incidence of invasive pneumococcal disease in the Quebec population, and to define if this surveillance program provides added value to a sentinel site based approach. Results of this research project could help guide public health authorities in immunization strategies and will also provide useful information for vaccine design.

2

											~~~				
	Canjugué	Conjugaé	Conjugué	Polysac- charidique	2014	1					201:	3			_
Serviype	7-valent	10-valent	13-valent	23-valeat	301	λοΰ	Sep	Oct	New	Déc	Jan	Fév Max	Avr M	ai J	an
4 6B	X	x	z X	x	ċ	2 2	ç	à	ų S	្	0				
9V	X	X	z	x	े २	2	ę	ę	G	¢	6				
14 197	X	x x	x	X	ő	ő	ā	ŝ	0	â	ĉ				
132	x	X	Z	X	¢.	0	0	ç	1	9	1				
23F	x	X	X	x	1	9 0	0 0	0	2	0	υ 0				
ŝ		x	x	x	è	ő	ő	ā	ō	5	¢				
27		X	Z	x	5	1	1	ŝ	3	ŝ	7 7 10				
3 62			X	~	\$	ŝ	õ	ò	- 2	1	ŝ				
19R			Х	x	1	0	1	5	2	9	15				
2				x x	U Č	2	0	2	2	3	0				
9M				x	2	ō.	5	ē	2	5	4				
10R				X	1	1	୍	् २	2	4	1.5				
12F				x	- ç	1	1	ŝ	ĩ	4	8				
158				×	1	0	<u></u>	2	2	-	6 0				
175 20				x	š	õ	õ	ĩ	2	ŝ	ő				
221				x	<u> </u>	3	3	\$	3	5	36				
24F				x	1	Q	0	÷	U	0	•				
éC.					1	L	0	2	Ģ	ŝ	1				
4D					<u></u>	20	2	0 4	5	9	ĝ n				
78 75					ů.	ő	ž	õ	ç	ç	ŏ				
16					1	1	1	5	0	1	ç				
ед. 07					- V 	0	0	0	0	0 0	0 0				
108					é	្	0	G	0	Q	0				
200					\$ 0	0 0	0	0 8	9 0	0	0				
115					÷	ŝ	ě	ō	ō	ē	ō				
11C					ڻ ح	0	8	្	0	0	0				
110 33F					ů G	3	¢.	2	0	ő	ŏ				
12A					ġ	Ő.	0	8	0	Q.	0				
125					0 0	0	0	0 6	9 	1	0 8				
16A					ò	ő	ž	4	5	10	3				
150					ć	0	0	Q A	2	5	0				
167 163					Š.	ő	õ	័	Ğ	ő	ő				
16F					2	1	3	5	2	4	¢				
172					е С	0	0	9 0	0	9 0	0				
188					ç	Ģ	Ģ	5	ð	0	Ģ				
ler					ن م	0 0	් බ	9 	9	0 0	- 0 - 0				
190 190					ě	ŝ	ŏ	ě	õ	ş	õ				
21					5	0	Č,	2	0	0	Ŷ				
222. 233.					2	1	3	् ब	ů.	3	2				
238					2	5	2	1	2	2	3				
24A 248					0 0	0 0	0 0	ŏ	0	0	с 5				
242					ć.	ì	ē	Ĵ,	ç	Ĺ	1				
283.					0 2	0	Q A	-0 -0	0	0	9 15				
27					۰. ت	ő	õ	ő	ō	3	č				
26A					0	0	¢	9	0	5	¢				
28F					0 0	2	0	0 3	6	3	0				
32					ŏ	č	1	1	õ	1	1				
32A					¢	ç	0	0	0	0	e A				
32F 373					- v	2	6	0 0	0	0	ç				
33B					¢	Q	G	5	0	Q.	ũ				
83C					ೆ ೧	ů N	0	ф - А	5 A		6				
330 34					č	ő	- ē	2	5	3	ĩ				
35A					0	Q	õ	0	Ũ	0	Ŷ				
958					C C	0	1	1	1	2	0 10				
35F					õ	ž	ž	ž	ĩ	ĩ	2				
86					ç	<u></u>	0	Ŷ	0 S	0	6				
37					ن 1	0 0	- 9 - 2	1	1	9 9	0 0				
39					ç	ġ.	ő	5	ē	þ	¢				
40 					ې د	0	9	0	0	9	0				
115 42E					0	ç	ő	ŏ	0	2 2	0 0				
42					ů.	Ĵ,	ð	ę	9	5	ŝ				
43 44					0 0	⊽ ∧	្ត ក	0 n	0 6	0	е А				
45					0	5	5	0	õ	ě	ç				
46					ç	ô	ŝ	ş	0	ş	ŝ				
47A 475					0	ं २	0	0 0	0 0	0 5	С Q				
42					ŝ	ş	ŝ	ő	ċ	ō	ů				
Ven séve					.3		n	ň		p	ċ				
son zerozābrpie					4	-	v	Ŷ	č	Ģ	Ŷ				
Inconnu					1	Ŷ	0	ن	1	9	1				
Total					29	15	35	64	44	83	93				

**Figure 1**. Données mensuelles des souches invasives de *S. pneumoniae* chez les patients de 5 ans et plus ⁽⁶⁾.

3

#### **Project objectives**

- 1- To characterize serotypes and antibiotic resistance profile of all invasive *S. pneumoniae* strains from the adult population in Quebec.
- 2- To assess whether the serotype profile differ from the entire population compared to the profile obtained from sentinel sites.
- 3- To follow the incidence of IPD in Quebec over several years and evaluate the impact of current vaccine, PCV-13 on IPD incidence.

#### Methodology

The research project will cover the complete adult population for 3 additional years (September 2015 to August 2018). We expect to collect 550 additional strains yearly to reach an average of 1000 strains yearly (estimated based on 2014 data). This will represent all the invasive *S. pneumoniae* strains of the province of Quebec. We propose to conduct this extended program for a 3-year period, after which a program evaluation will be performed. Serotyping using Quellung methodology and determination of susceptibility profiles using microdilutions method will be performed on all *S. pneumoniae* invasive strains collected in patients aged of  $\geq$  5 year old.

Those additional strains will be provided by non-sentinel hospitals (n=74) which, until now, only provided LSPQ with strains from child <5 years old and strains resistant to penicillin ( $\geq$  0.12 mg/L according meningitis criteria).

Data will be published monthly through StatLabo including serotype stratified according to patients' age and months.

Steps	Lenght
Monitoring of invasive S. pneumoniae serotypes in patients aged $\geq$ 5 years old.	Years 1, 2 and 3
Real-time updating of StatLabo surveillance information using Quellung method.	Years 1, 2 and 3
Conferences.	Years 1, 2 and 3
Publication.	Year 3

#### Time-line

#### Timeframe

See annexe 1

#### **Project Benefits**

- 1- Real-time monitoring of invasive *S. pneumoniae* serotypes and antibiotic resistance in adult in the province of Quebec.
- 2- Monitoring of IPD incidence in Quebec.
- 3- Comparison of actual provincial surveillance program using data from sentinel hospitals vs data from the study for individuals aged of ≥ 5 years old.
- 4- Data available for public health orientation on immunization program in adult population.

#### Deliverables

- 1- Monitoring of invasive *S. pneumoniae* strains in adult population for 3 years, starting in Septembre 2015 and ending in August 2018.
- 2- Monthly reporting of serotypes in StatLabo.
- 3- Data from the study will be presented at scientific meetings (AMMIQ [at the end of year 1], CACMID [at the end of year 2], ISPPD[at the end of year 3]) and published in a peer reviewed journal (Vaccine/PlosOne) at the end of the study.

#### References

- 1- Spellerberg, B. and Brandt C. *Streptococcus.* 2011. Manual of clinical microbiology. 10th edition. American Society for microbiology, Washington, D.C.
- 2- Regev-Yochay G, Paran Y, Bishara J, Oren I, Chowers M, Tziba Y, Istomin V, Weinberger M, Miron D, Temper V, Rahav G, Dagan R; IAIPD group. 2015. Early impact of PCV7/PCV13 sequential introduction to the national pediatric immunization plan, on adult invasive pneumococcal disease: A nationwide surveillance study. Vaccine. 25;33(9):1135-42.
- 3- Liyanapathirana, V., EA. Nelson, I. Ang, R. Subramanian, H. Ma, M. Ip. 2015. Emergence of serogroup 15 *Streptococcus pneumoniae* of diverse genetic backgrounds following the introduction of pneumococcal conjugate vaccines in Hong Kong. Diagn Microbiol Infect Dis. Jan;81(1):66-70.
- Lefebvre B., C. L. Tremblay. 2012. Programme de surveillance du pneumocoque. Rapport 2011. INSPQ. ISBN : 978-2-550-66364-5.
- 5- Bulletin STATLABO. Institut national de santé publique du Québec (INSPQ), Laboratoire de santé publique du Québec (LSPQ). Statistiques d'analyses du LSPQ. 2012. Vol. 11, no.11.
- 6- Bulletin STATLABO. Institut national de santé publique du Québec (INSPQ), Laboratoire de santé publique du Québec (LSPQ). Statistiques d'analyses du LSPQ.2015 Vol. 14, no. 2.

## Annexe 1. Time Frame/Project Goals (arrows), milestones (red), task (blue bars) and timelines.

	YEAR 1	YEAR 2	YEAR 3
Surveillance of S. pneumoniae serotyping using Quellung method.	-Communication and the second		
Continuous and real time updating of StatLabo surveillance information.	-Contemporation		annan an a
<ul> <li>Database updating with serotypes in relationship with age (StatLabow)</li> </ul>	- 1920.000 (AND 1920.000 (AND 1920.000)		
<ul> <li>Evaluation of the impact of extended surveillance to adults in the design of vaccines at the end of year 1, 2 and 3.</li> </ul>	.0	<b>&gt;</b>	) ()
Conferences			<b>A</b>
Publication			

6

## ANNEXE D DÉFINITION DE REPRÉSENTANT DE L'ÉTAT

Le terme « Représentant de l'État », lequel doit recevoir une interprétation large, désigne :

- (i) un Représentant de l'État élu ou nommé d'un autre pays que les États-Unis (p. ex. : un législateur ou un membre d'un ministère non américain),
- (ii) un employé ou une personne agissant à la place ou au nom d'un Représentant de l'État non américain, d'une agence ou d'une entreprise non américaine assumant une fonction gouvernementale, ou détenue ou contrôlée par un gouvernement non américain (par exemple un professionnel de la santé employé par un hôpital public non américain ou un investigateur employé par une université publique non américaine),
- (iii) un représentant d'un parti politique non américain, un candidat à une fonction publique non américaine, un employé ou une personne agissant à la place ou au nom d'un parti politique ou d'un candidat à une fonction publique non américaine,
- (iv) un employé ou une personne agissant pour ou au nom d'une organisation publique internationale,
- (v) un membre d'une famille royale ou membre d'un corps d'armée non américain, et
- (vi) toute personne autrement considérée comme un Représentant de l'État en vertu des lois locales en vigueur ou des Politiques de Pfizer.

Cela signifie que les professionnels de la santé qui sont employés par un hôpital gouvernemental ou encore une université, qui y enseignent ou y jouissent de certains privilèges peuvent être considérés comme représentants de l'État – même s'ils n'y travaillent qu'à temps partiel. Dans bien des pays, particulièrement ceux où le gouvernement est propriétaire ou dirigeant de nombreux services de soins de santé et pharmacies, pratiquement tous les professionnels de la santé peuvent être considérés comme des représentants de l'État en vertu des lois FCPA et *Global Anti-Corruption* des États-Unis.

## Les employés des organismes d'État suivants avec lesquels Pfizer interagit fréquemment sont automatiquement considérés comme des représentants de l'État au Canada :

- Santé Canada
- Industrie Canada
- Bureau du Conseil privé
- Cabinet du Premier ministre
- Affaires étrangères et Commerce 
   international
- Conseil d'examen du prix des 

   médicaments brevetés
- Anciens Combattants Canada
- Défense nationale
- Ministères des Finances Canada
- Gendarmerie royale du Canada
- Programme commun d'évaluation des 

   médicaments (PCEM)

- Integrated Health Agencies (Canada atlantique)
- Centres de santé et de services sociaux (CSSS successeurs des CLSC) (Québec)
- Groupes de médecine familiale (Québec)
- Cliniques réseau (CR ou CMA) (Québec)
- Réseaux locaux d'intégration des services de santé (Ontario)
- Équipes de santé familiale (Ontario)
- Regional Health Authorities (Ouest canadien)
- Agence canadienne d'inspection des aliments
- Direction des médicaments vétérinaires (DMV)

 Agence canadienne des médicaments
 Aquaculture Canada et des technologies de la santé (ACMTS)

#### Exemples de représentants de l'État au Canada :

- Représentants de l'État élus ou nommés;
- Fonctionnaires;
- Candidats déclarés d'un parti politique (en vue de l'investiture d'un parti ou d'une élection);
- Professionnels de la santé satisfaisant aux critères énoncés dans la définition de représentant de l'État, par exemple, professionnels de la santé au service a) de l'armée, b) du Service correctionnel du Canada (prisons et pénitenciers) ou c) d'hôpitaux ou d'établissements de santé exploités ou régis par l'État (hôpitaux psychiatriques, hôpitaux pour les anciens combattants), et professionnels de la santé membres de groupes de travail ou de comités étatiques (p. ex., le Comité consultatif d'experts pour le traitement des douleurs chroniques intenses, le Comité consultatif sur le sida, le Conseil consultatif national sur le troisième âge, le Medical Advisors Group);
- Professionnels de la santé administrateurs, dirigeants ou employés de tout établissement de soins de santé (p. ex., hôpital, clinique, etc.) ou de tout établissement d'enseignement supérieur (p. ex., collège, cégep, université, etc.) financé par l'État, ou qui y sont affiliés;
- Dirigeants, employés ou particuliers qui agissent à titre officiel au nom de conseils scolaires et de collèges communautaires;
- Officiers, employés ou particuliers qui agissent à titre officiel au nom de l'Organisation des Nations Unies, de l'Organisation mondiale de la santé, de l'Organisation mondiale du commerce, de la Commission mixte internationale États-Unis et Canada, du Comité international de la Croix-Rouge, de la Banque nord-américaine de développement (NADB), du Fonds monétaire international, de l'Organisation internationale de police criminelle (INTERPOL) ou de la Banque interaméricaine de développement; et dirigeants, employés ou particuliers qui agissent à titre officiel au nom des conseil scolaires et de collèges communautaires.

Version : 9 avril 2013

Pfizer	STUD FC	Y STATUS UPDATE DRM: CLINICAL	
IIR Grant Specialist IIR Grant Specialist EMAIL		IIR Grant Specialist PHONE IIR Grant Specialist FAX	
PLEASE COMPLETE AND Per contractual requirement and/or drug. Please answer from your last submitted upo questions.	<b>D RETURN BY:</b> April 2 s, we are requesting a stat the following questions reg date have been incorporate	<b>26, 2016</b> cus update on your IIR study supported arding the above referenced study by the d below; please update as needed and a	by Pfizer via fundin e due date. Answer nswer the remainin
GENERAL INFORMATION			
Pfizer Tracking #	WI197603	Institutional Protocol #	
Principal Investigator	Dr. Brigitte Lefebvre		
Study Title	Molecular tools for se strains surveillance in	rotyping for Streptococcus pneum the province of Quebec.	oniae invasive
STUDY UPDATE INFORMA	ATION		
Has this study been initiated?		S Date of initiatic	mm/dd/yyyy 01/01/2016
Has the protocol been amended	d since last update?	NO YES (If YES, please provide t	he revised protocol)
Current IRB/IEC approval/renew <b>2016</b>	val expires on November 5,	If this is not current, please forward th	e most recent letter
Have there been any personnel of	changes? (If YES, please provide	e name and full contact info on Page 3)	NO YES
Target protocol enrollment	N/A	Date of first subject enrolled	N/A
Last reported enrollment	N/A	Actual enrollment to date (this should not include screen failures)	N/A
Targeted last subject last visit	N/A	Actual last subject last visit	N/A
Do you have current drug supply	y sufficient to complete the st	udy? (If NO, please complete the Drug Sectio	ⁿ ⊠ NO □ YES
Is this protocol closed to enrolln methods's development for whic	nent? (patients may still be re ch no enrollment is required.	ceiving therapy) N/A this is a project on	NO YES
Targeted study completion date	(primary objectives met; patier	nt therapy and final study analysis complete)	mm/dd/yyyy 02/10/2017
Actual study completion date (if	fapplicable)		mm/dd/yyyy N/A
Targeted date to provide results	s to Pfizer		mm/dd/yyyy 02/28/2017
PUBLICATION INFORMATI	ION	Sector Contractor State	
ODLICITION IN OTHER I	ion		

Pfizer	0.37E 97	STUDY STATUS FORM: CLINI	UPDATE ICAL		
IIF IIR Grant	R Grant Specialist Specialist EMAIL	IIR Grant S IIR Gra	Specialist PHONE nt Specialist FAX		
opportuni	ty to prospectively review an	y proposed publication, abstr the results of the study.	act or other type	of disclos	ure that reports
FORMAT	PL (please include ant	IBLICATION icipated journal or audience)	PLANNED	ACTUAL	SUBMISSION DATE mm/dd/yyyy
Abstract					
Manuscript	PlosOne		$\boxtimes$		02/01/2017
Poster Other	CACMID	te - Sriving all Li returin References			04/01/2017
SIGNATUR	E				
NAME DATE	Brigitte Lefebvre 04/26/2016	SIGNATURE (ONLY if faxed	d)		

Pfizer STUDY FOR		TATUS UPDATE I: CLINICAL	
IIR Grant : IIR Grant Special	Specialist ist EMAIL	IIR Grant Specialist PHONE IIR Grant Specialist FAX	
ORUG SUPPLY IN	FORMATION		
SUPPLY CURRENTLY	ON SITE	ACTIVE	PLACEBO
ESTIMATED REMAIN	DER REQUIRED TO COMPLETE STUDY	ACTIVE	PLACEBO
CAN PHARMACY ACC	COMODATE TOTAL REMAINDER?	YES	NO
PERSONNEL INFO	DRMATION		and the second second
	PRINCIPAL INVESTIGATOR	CO	ORDINATOR
NAME	Lefebvre Brigitte		
NSTITUTION	INSPQ/LSPQ		
MAILING ADDRESS	20045, chemin Sainte Marie, sainte-Anne-de Bellevue, H9X 3R5, Québec, Canada	-	
TELEPHONE	514 4572070# 2334		
AX	514 4576346		

ADDITIONAL COMMENTS

IIR Grant Specialist		IIR Grant Specialist PHONE	
IIR Grant Specialist EMAIL		IIR Grant Specialist FAX	and the second
PLEASE COMPLETE AN Per contractual requirement and/or drug. Please answe from your last submitted up questions.	ID RETURN BY: April 20 nts, we are requesting a statu r the following questions rega pdate have been incorporated	<b>5, 2016</b> us update on your IIR study supported b ording the above referenced study by the d below; please update as needed and an	y Pfizer via fur due date. Ans swer the rema
GENERAL INFORMATION	V		a Lusser
Pfizer Tracking #	WI203144	Institutional Protocol #	
Principal Investigator	Dr. Brigitte Lefebvre		
Study Title	Serotype monitoring of population in the provi	f S. pneumoniae invasive strains in ince of Quebec_ a 3 years study ev	n adult valuation.
STUDY UPDATE INFORM	IATION		
Has this study been initiated?	□ NO ⊠YES		mm/dd/yyyy
		Date of initiation	01/01/2016
Has the protocol been amend	ed since last update?	NO YES (If YES, please provide the	revised protocol,
2016	ewal expires on November 5,	This is not current, please forward the mo	ost recent letter
Have there been any personne	l changes? (If YES, please provide	name and full contact info on Page 3)	
	550 (strains)		mm/dd/yyy
Target protocol enrollment		Date of first subject enrolled	01/01/2016
Last reported enrollment	N/A	Actual enrollment to date (this should not include screen failures)	189 (strains
Targeted last subject last visit	550 (strains)	Actual last subject last visit	N/A
Do you have current drug sup on Page 3)	ply sufficient to complete the stu	dy? (If NO, please complete the Drug Section	
Is this protocol closed to enro	Ilment? (patients may still be rec	eiving therapy)	
			mm/dd/yyyy
Targeted study completion dat	e (primary objectives met; patient	t therapy and final study analysis complete)	12/31/2018
			12/31/2018
Actual study completion date	(if applicable)		12/31/2010
Targeted date to provide resu	lts to Pfizer 6 months following t	he end of the study	30/06/2019
PUBLICATION INFORMA	TION		
Do you plan to publish? (If YE.	S, please complete the information	on below.)	
Please be aware that, a	ccording to the IIR agreemen	nt, the investigator is required to provid	e Pfizer with a

Phzer		17.0424 19	STUDY FO	Y STATUS UPD. PRM: CLINICAI	ATE		
II IIR Gran	IR Grant Specialist It Specialist EMAIL			IIR Grant Special IIR Grant Spe	ist PHONE cialist FAX		
Abstract	10th Internation Diseases (ISPPD)	al Symposium on I Glasgow, Scotland	Pneumococci a d 26 to 30 June	nd Pneumococcal 2016 (Poster)		$\boxtimes$	
Manuscript	Vaccine/PloOne			o entrino o girenes-spen dinamen consideration col			
Poster	CACMID						05/03/2017
Other							
SIGNATU	DE	A State of the					
MANAF	Drigitte Lofeburg		1. A. C. M.				
	Brighte Lefebrie		-				
DATE	04/26/2016		SIGNAT	ORE (ONLT IJ JUXEU)			
				/			

Pfizer	STUDY ST FORM:	ATUS CLIN	UPDATE IICAL	
IIR Grant S IIR Grant Speciali	Specialist st EMAIL	IIR Grant IIR Gr	Specialist PHONE ant Specialist FAX	
DRUG SUPPLY IN	FORMATION	-		
SUPPLY CURRENTLY	ON SITE		ACTIVE	PLACEBO
ESTIMATED REMAINDER REQUIRED TO COMPLETE STUDY			ACTIVE	PLACEBO
CAN PHARMACY ACCOMODATE TOTAL REMAINDER?			YES	NO NO
PERSONNEL INFO	DRMATION			
	PRINCIPAL INVESTIGATOR		со	ORDINATOR
NAME	Lefebvre Brigitte			
INSTITUTION	INSPQ/LSPQ			
MAILING ADDRESS	20045, chemin Sainte Marie, sainte-Anne-de- Bellevue, H9X 3R5, Québec, Canada			
TELEPHONE	514 4572070# 2334			
FAX	514 4576346			
and the state				

	PHARMACIST	OTHER (specify in additional comment
NAME		
INSTITUTION		
MAILING ADDRESS		
TELEPHONE		
FAX		
EMAIL		

ADDITIONAL COMMENTS

Pfizer	STUDY STATUS UPDATE FORM: CLINICAL						
IIR Grant Specialist IIR Grant Specialist EMAIL	IIR Grant Specialist PHONE IIR Grant Specialist FAX						
PLEASE COMPLETE AND RETURN BY: January 19, 2017 Per contractual requirements, we are requesting a status update on your IIR study supported by Pfizer via funding							

and/or drug. Please answer the following questions regarding the above referenced study by the due date. Answers from your last submitted update have been incorporated below; please update as needed and answer the remaining questions.

GENERAL INFORMATION							
Pfizer Tracking #	WI197603	Institutional Protocol #					
Principal Investigator	Dr. Brigitte Lefebvre						
Study Title	Molecular tools for sero strains surveillance in th	typing for Streptococcus pneumor ne province of Quebec.	niae invasive				
STUDY UPDATE INFORMA	ATION						
Has this study been initiated?	🗌 NO 🛛 YES	Date of initiation	mm/dd/yyyy 2016-01-01				
Has the protocol been amended	d since last update?	NO YES (If YES, please provide the	revised protocol)				
Current IRB/IEC approval/renev 2017	val expires on November 5,	If this is not current, please forward the n	nost recent letter				
Have there been any personnel	changes? (If YES, please provide n	ame and full contact info on Page 3)					
Target protocol enrollment	N/A	Date of first subject enrolled					
Last reported enrollment	N/A	Actual enrollment to date (this should not include screen failures)					
Targeted last subject last visit	N/A	Actual last subject last visit					
Do you have current drug suppl on Page 3) LSPQ : N/A, no drug							
Is this protocol closed to enrollr LSPQ : N/A this is a project on n	NO YES						
Targeted study completion date	(primary objectives met; patient t	herapy and final study analysis complete)	02/10/2017 mm/dd/yyyy				
Actual study completion date (ij	N/A mm/dd/yyyy						
Targeted date to provide result	02/28/2017 mm/dd/yyyy						
PUBLICATION INFORMAT	TION						
Do you plan to publish? (If YES,	please complete the information	n below.)					
Please be aware that, according to the IIR agreement, the investigator is required to provide Pfizer with an							

# STUDY STATUS UPDATE FORM: CLINICAL

Pfizer			STUDY S FOR	STATUS UPDA M: CLINICAL	ATE		
IIF	R Grant Specialist	Pina Mustillo		IIR Grant Specialis	st PHONE	514-426-7	021
IIR Grant	Specialist EMAIL	pina.mustillo	@pfizer.com	IIR Grant Spec	cialist FAX	514-693-4	715
opportuni	ty to prospective	ely review an	y proposed public the results of	ation, abstract or the study.	other type	of disclos	ure that reports
FORMAT	(plea	PL nse include anti	IBLICATION icipated journal or a	udience)	PLANNED	ACTUAL	SUBMISSION DATE mm/dd/yyyy
Abstract	IUMS or EMBO					$\boxtimes$	01-20-2017
Manuscript	PlosOne				$\boxtimes$		08-01-2017
Poster							
Other							
SIGNATUR	E						
NAME	Brigitte Lefebvre						
DATE	01/13/2017		SIGNATURE	(ONLY if faxed)			

Pfizer		STUDY FOI	STATU RM: CLI	S UPDATE NICAL		
IIR Grant S	pecialist		IIR Gra	nt Specialist PHONE		
IIR Grant Speciali	st EMAIL		IIR	Grant Specialist FAX		
DRUG SUPPLY IN	FORMATION					
SUPPLY CURRENTLY	ON SITE			ACTIVE	PLACEBO	
ESTIMATED REMAIN	DER REQUIRED TO COM	PLETE STUDY		ACTIVE	PLACEBO	1
CAN PHARMACY ACC	COMODATE TOTAL REM	AINDER?		YES	ΝΟ	
PERSONNEL INFO	RMATION					
	PRINCIPAL	INVESTIGATOR		cc	DORDINATOR	
NAME						
INSTITUTION						
MAILING ADDRESS						
TELEPHONE						
FAX						
EMAIL						
	РНА	RMACIST		<b>OTHER</b> (specify	y in additional comment	s)
NAME						
INSTITUTION						
MAILING ADDRESS						
TELEPHONE						
FAX						
EMAIL						
ADDITIONAL COMMENTS						



# **Abstract Submission**

Bacteriology and Applied Microbiology Applied Microbiology and Biotechnology

#### IUMS2017-1079 SEROTYPING OF STREPTOCOCCUS PNEUMONIAE INVASIVE STRAINS USING MOLECULAR BIOLOGY TOOLS

Florian Mauffrey^{*}¹, Éric Fournier¹, Christine Martineau¹, Simon Lévesque¹, Walter Demczuk², Irene Martin², Florence Doualla-Bell¹, Cécile Tremblay³, Jean Longtin¹, Brigitte Lefebvre¹

¹Institut Nationale de Santé Publique du Québec, Sainte-Anne-De-Bellevue, ²National Microbiology Laboratory, Winnipeg, ³Université de Montréal, Montréal, Canada

## <br/>br/>>Would you like to apply for a travel grant?: Yes

**Objectives:** *Streptococcus pneumoniae* is a major cause of pneumonia, meningitis and other pneumococcal infections among young children and elders. Pneumococcal Conjugate Vaccines (PCVs) protect the population from the most prevalent serotypes of *S. pneumoniae*. From a public health perspective, accurate serotyping of *S. pneumoniae* is essential to monitor the serotype replacement following the introduction of PCVs. Although the Quellung reaction is the gold standard test for *S. pneumoniae* serotyping, this method is costly, time-consuming and dependent on human interpretation. The purpose of this study was to test and evaluate the efficiency of three different molecular serotyping methods as an alternative to the Quellung method.

**Methods:** The performance of a sequential multiplex PCR assay from the Centers for Disease Control and Prevention, a sequence typing assay (sequetyping) developed by Leung *et al.* (2012) based on the sequence of the *cpsB* gene within the pneumococcal capsular locus, and the whole genome sequencing (WGS) using Illumina MiSeq system were compared using 121 strains of *S. pneumoniae* previously serotyped by the Quellung method. The NCBI GenBank database was used to perform the sequetyping method. To assess WGS-based serotyping we adopted two different approaches: an in-house assembly/Blast strategy; and the PneumoCaT bioinformatics tool that uses read alignments rather than assemblies. All the 121 strains representing 83 different serotypes were serotyped by sequential multiplex PCR and sequetyping while 53 strains representing 32 serotypes were tested by WGS.

**Results:** The sequential multiplex PCR assay successfully identified 66% of the isolates at the serogroup or subset (cluster of serotypes from different serogroups) level while 34% was identified at the serotype level. A large proportion (23%) of strains was not typeable by the PCR assay. The WGS method exhibited the best performance with 91% of the isolates unambiguously identified at the serotype (66%) or serogroup level (25%) when using the in-house strategy. Ambiguous (6%) and misidentified (3%) results were low with WGS. PneumoCaT results revealed several misidentifications inside serogroups (21%). Interestingly, *S. pneumoniae* serotype 22F was correctly identified using PneumoCaT while our in-house strategy allowed for the identification of the serogroup only. One *S. pneumoniae* serotype 29 isolate was misidentified by both WGS analysis strategies, revealing divergences in serotype 29 sequences. Sequetyping was the method exhibiting the most misidentified serotypes (20%) and ambiguous results (15%). Moreover, even though 50% of serotypes were correctly identified, the second best High Scoring segment Pair (HSP) had often only 1 or 2 mismatches with the best HSP due to intra-specific variations in *cpsB* gene.

**Conclusion:** The proportion of serotypes identified using sequential multiplex PCR to the serotype level was too low to use as an alternative to the Quellung method. Although the sequetyping is currently the most economical method, it exhibited a high number of misidentified serotypes (20%). The WGS-based serotyping methods exhibited the best performance as they predicted capsular types

at serotype and serogroup levels for 91% (66% at the serotype level) of the strains tested with only one misidentified serotype. WGS could be considered as a potent tool for *S. pneumoniae* serotyping and useful for epidemiological purposes.

**Disclosure of Interest**: F. Mauffrey: None Declared, É. Fournier: None Declared, C. Martineau: None Declared, S. Lévesque: None Declared, W. Demczuk: None Declared, I. Martin: None Declared, F. Doualla-Bell: None Declared, C. Tremblay: None Declared, J. Longtin: None Declared, B. Lefebvre Grant/ Research support from: Pfizer

Keywords: S. pneumoniae, Serotyping

# New molecular tools for the serotyping of *Streptococcus pneumoniae* invasive strains in the province of Quebec – Part 2

## Principal Investigator, Project leader

Brigitte Lefebvre, Ph.D., Microbiologist, LSPQ

## **Co-Principal Investigator**

Cécile Tremblay, MD, FRCPC, Département de Microbiologie, immunologie et Infectiologie Université de Montréal

## **Co-Investigators**

Simon Lévesque, Ph.D., Microbiologist, LSPQ Sadjia Bekal, Ph.D., Microbiologist, LSPQ Marc-Christian Domingo, Ph.D., Microbiologist, LSPQ

## **Technical and Bioinformatics leader**

Eric Fournier, D.E.S.S. bioinformatics, M.Sc., Bioinformatics Scientist, LSPQ Florian Mauffrey, Ph.D., Microbiologist, Post-doctoral fellow, LSPQ Christine Martineau, Ph.D., Microbiologist, LSPQ

## **Scientific Coordinator**

Florence Doualla-Bell, Ph.D., LSPQ

## **Scientific Director**

Jean Longtin, MD, LSPQ

## Authors

Florian Mauffrey, Ph.D., Microbiologist, Post-doctoral fellow, LSPQ Brigitte Lefebvre, Ph.D., Microbiologist, LSPQ

# Introduction

Part one of the project developed and tested three molecular serotyping methods for *Streptococcus pneumoniae*. The present report is the second phase of the project which focused on the confirmation of specificity and sensitivity with an increased number of serotypes and confounding strains. Specific specimens were tested in order to answer some issues encountered in Part 1 (serotype 35A and 34 for multiplex PCR and serotype 29 for sequetyping). Non-*S. pneumoniae* (*S. pseudopneumoniae* and *S. mitis*) were also included in the study as controls for the specificity of multiplex PCR and sequetyping.

All testing was performed in standard reference laboratory conditions. This allowed for an accurate evaluation of the cost and time required for each method in order to obtain results. This is particularly important for the evaluation of the multiplex PCR method since several steps are required to identify serotypes and the number of steps differs depending on the serotype.

## **Material and methods**

Methodology was extensively described in Part 1 of this report. Please refer to Part 1 for details.

### **Bacterial isolates**

Ninety-four isolates of *Streptococcus pneumoniae* were used in this part of the study (Table 1). They include 49 different serotypes previously identified by the Quellung reaction using Statens Serum Institute antisera, 9 of which were not tested in Part 1. Strains with rare serotypes (n=13) were provided by the National Microbiology Laboratory (NML, Winnipeg). Thus, the full report covers up to 83 different serotypes (more than 90 serotypes described to date for *S. pneumoniae*) for 2 out of the 3 methods tested. Ten serotypes (9, 10C, 11D, 12B, 16A, 19B, 19C, 25A, 33C and 33D) were not tested in this study due to lack of availability at the LSPQ and the NML. The specificity of the multiplex PCR and sequetyping methods was also evaluated with three strains of *S. pseudopneumoniae* and 3 strains of *S. mitis* 

## Whole Genome Sequencing (WGS)

Whole genome sequencing was performed on 32 pneumococci isolates (Table 1) using the Illumina MiSeq system and Nextera XT DNA reagent kit v3 (600 cycles, paired ends). The 32 isolates were sequenced in a single batch; therefore lower coverage per isolate was obtained. Nevertheless, coverage was adequate for serotyping according to MiSeq Sequencing Coverage Calculator (http://support.illumina.com/downloads/sequencing coverage calculator.html).

An average theoretical coverage of 70X should be obtained with 32 isolates and a minimum coverage of 35X is considered standard for detecting single-nucleotide variants (Sims *et al.*, 2014). All best High Scoring segment Pairs (HSP) with a similar length and a similar nucleotide identity (< 0.5%) were considered for serotype identification.

#### **Bioinformatics tools**

For isolate MA080904, in-house python scripts were used to remove contigs with excessive coverage in order to calculate relevant metrics. Metrics were then computed with Quast (Gurevich *et al.*, 2013).

For isolate LSPQ4282, in-house Biopython (<u>http://biopython.org/</u>) scripts removed non *S. pneumoniae* contigs from the assembled sequences fasta file. Metrics computation and Blast were performed before and after removing contigs.

For the other strains, bioinformatic analyses were performed as described in Part 1 of the project.

PneumoCaT, a bioinformatics workflow designed for *S. pneumoniae* serotype identification, which did not rely on assembled contigs, was also tested against our own pipeline (Kapatai *et al.*, 2016). Reads were directly mapped against a *cps* gene sequences database. When sequences of the same serotype had a high reads coverage (> 90%), this serotype was attributed to the isolate. When several sequences with a high coverage (> 90%) belonged to the same genogroup, a deeper analysis allowed the discrimination of the correct serotype (SNPs, alleles, presence of genes). When no sequence had enough coverage, no serotype was attributed and the flag "failed" was attributed.

## Sequential multiplex PCR

PCRs were performed with the sequential reactions on 77 strains (CDC protocol). This was done to ensure that correct serotypes were detected at the expected multiplex PCR and to verify the presence of non-specific reactions in the other multiplex PCR. When correct amplification occurred, isolates were discarded and not tested for the following multiplex PCR as would occur routinely. Identification levels were defined as 1) **Serotype** when the correct serotype was determined, 2) **Serogroup** when several serotypes belonging to the correct serogroup were determined, 3) **Ambiguous** when several serotypes belonging to different serogroups but including the correct serotype was attributed.

Isolates with serotypes not detectable according to the CDC sequential multiplex PCR protocol were tested with this method to confirm the presence/absence of non-specific reactions.

Amplification issues were identified in Part 1 for serotype 35A (no amplification) and serotype 34 (non-specific amplicons). To confirm that these results were due to the PCR protocol and not genetic variants, 5 isolates of serotype 35A and serotype 34 were tested for the multiplex PCR reaction 7 (positive amplification expected).

## Sequetyping

Sequetyping was performed on 54 isolates. Because we encountered some technical issues on isolates of serotype 29 during part 1 of the project, (absence of amplification of the *cpsB* gene) we sequenced five isolates of serotype 29.

**Table 1** Serotypes and isolates ID used in this study and selected isolates for the serotypingmolecular methods tested.

		Tested serotyping methods				
Serotypes ⁽¹⁾	Isolates ID	WGS	Sequetyping	Sequential multiplex PCR		
1	MA096520		$\checkmark$	$\checkmark$		
1	MA101323		$\checkmark$	$\checkmark$		
3	MA080904	$\checkmark$				
3	MA081716	$\checkmark$				
3	MA082307	$\checkmark$				
3	MA086676	$\checkmark$				
3	MA096946	$\checkmark$				
3	MA100130		$\checkmark$	$\checkmark$		
3	MA101386		$\checkmark$	$\checkmark$		
4	MA079938	$\checkmark$				
4	MA100773		$\checkmark$	$\checkmark$		
4	MA101744		$\checkmark$	$\checkmark$		
5	MA082483		$\checkmark$	$\checkmark$		
6A	MA099472		$\checkmark$	$\checkmark$		
6A	MA101024		$\checkmark$	$\checkmark$		
6B	MA098599		$\checkmark$	$\checkmark$		
6B	MA101145		$\checkmark$	$\checkmark$		
6C	MA099139		$\checkmark$	$\checkmark$		
6C	MA100925		$\checkmark$	$\checkmark$		
7F	MA093680		$\checkmark$	$\checkmark$		
7F	MA097140		$\checkmark$	$\checkmark$		
9L	LSPQ4271	$\checkmark$	$\checkmark$	$\checkmark$		
9N	MA080879	$\checkmark$				
9N	MA081113	$\checkmark$				
9N	MA098250		$\checkmark$	$\checkmark$		
9N	MA100245		$\checkmark$	$\checkmark$		
9V	MA097827		$\checkmark$	$\checkmark$		
9V	MA098806		$\checkmark$	$\checkmark$		
10B	MA080812		$\checkmark$	$\checkmark$		
11B	MA096566		$\checkmark$	$\checkmark$		
11C	LSPQ4272	$\checkmark$	$\checkmark$	$\checkmark$		
11F	MA073130			$\checkmark$		
14	MA096954		$\checkmark$	$\checkmark$		
14	MA098680		$\checkmark$	$\checkmark$		
15A	MA080018	$\checkmark$				
15A	MA100658		$\checkmark$	$\checkmark$		
15A	MA101766		$\checkmark$	$\checkmark$		

	Tested serotyping methods					
Serotypes ⁽¹⁾	Isolates ID	WGS	Sequetyping	Sequential multiplex PCR		
16F	MA065427	-		$\checkmark$		
17A	LSPQ4273	$\checkmark$	$\checkmark$	$\checkmark$		
18C	MA093772		$\checkmark$	$\checkmark$		
18C	MA099660		$\checkmark$	$\checkmark$		
18F	LSPQ4274	$\checkmark$	$\checkmark$	$\checkmark$		
19A	MA083920	$\checkmark$				
19A	MA097921	$\checkmark$				
19A	MA098817	$\checkmark$				
19A	MA100706		<b>√</b> (3)	$\checkmark$		
19A	MA101978		$\checkmark$	$\checkmark$		
19A	MA083042			$\checkmark$		
19A	MA084138			$\checkmark$		
19F	MA100764		$\checkmark$	$\checkmark$		
19F	MA101680		$\checkmark$	$\checkmark$		
22F	MA080654	$\checkmark$				
22F	MA100780		$\checkmark$	$\checkmark$		
22F	MA101987		$\checkmark$	$\checkmark$		
23A	MA082395	$\checkmark$				
23F	MA100152		$\checkmark$	$\checkmark$		
23F	MA101159		$\checkmark$	$\checkmark$		
24A	LSPQ4275	$\checkmark$	$\checkmark$	$\checkmark$		
25F	LSPQ4276	$\checkmark$	<b>√</b> (3)	$\checkmark$		
27	MA088547		$\checkmark$	$\checkmark$		
28A	MA099752		$\checkmark$	$\checkmark$		
28F	LSPQ4277	$\checkmark$	$\checkmark$	$\checkmark$		
29	LSPQ3079			$\checkmark$		
29	MA097586	$\checkmark$	$\checkmark$			
29	MA098344		$\checkmark$			
29	MA098505		$\checkmark$			
29	MA100224		$\checkmark$			
29	MA101320		$\checkmark$			
32A	LSPQ4278	$\checkmark$	$\checkmark$	$\checkmark$		
32F	LSPQ3081			$\checkmark$		
33B	LSPQ4279	$\checkmark$	$\checkmark$	$\checkmark$		
33F	MA080211	$\checkmark$				
34	MA101496			$\checkmark$		
34	MA101843			$\checkmark$		

			Tested serotyping methods				
Serotypes ⁽¹⁾	Isolates ID	WGS	Sequetyping	Sequential multiplex PCR			
34	MA102076	-		$\checkmark$			
34	MA102374			$\checkmark$			
34	MA102487			$\checkmark$			
35A	LSPQ4266			$\checkmark$			
35A	LSPQ4267			$\checkmark$			
35A	LSPQ4268			$\checkmark$			
35A	LSPQ4269			$\checkmark$			
35A	LSPQ4270			$\checkmark$			
35A	MA101545	$\checkmark$					
35B	MA082394	$\checkmark$					
35C	LSPQ4280	$\checkmark$	$\checkmark$	$\checkmark$			
35F	MA081892	$\checkmark$					
36	LSPQ3641			$\checkmark$			
41A	LSPQ3089			$\checkmark$			
41F	LSPQ4281	$\checkmark$	$\checkmark$	$\checkmark$			
43	LSPQ3643			$\checkmark$			
47A	LSPQ4282	$\checkmark$	$\checkmark$	$\checkmark$			
47F	LSPQ4283	$\checkmark$	$\checkmark$	$\checkmark$			
45	LSPQ3092			$\checkmark$			
48	LSPQ3095			$\checkmark$			
S1 S. pseudopneumoniae ⁽²⁾	ID111828		$\checkmark$	$\checkmark$			
S2 S. pseudopneumoniae ⁽²⁾	ID112065		<b>√</b> (3)	$\checkmark$			
S3 <i>S. mitis</i> ⁽²⁾	ID112476		<b>√</b> (3)	$\checkmark$			
S4 S. pseudopneumoniae ⁽²⁾	ID112502		<b>√</b> (3)	$\checkmark$			
S5 <i>S. mitis</i> ⁽²⁾	MA084074		<b>√</b> (3)	$\checkmark$			
S6 S. mitis ⁽²⁾	MA084310		<b>√</b> (3)	$\checkmark$			

Table 1 (continued)

⁽¹⁾ Serotype determined by Quellung.

⁽²⁾ Non-*S. pneumoniae* used as controls

⁽³⁾ Strains tested by sequetyping with no amplification of *cpsB* observed.

# Results

### Evaluation of the Whole Genome Sequencing approach

### Paired-end reads quality

FastQC was used to compute and summarize reads statistics. The numbers of reads obtained for each isolate are shown in Table 2. A total number of 27 540 000 reads were obtained in this batch, representing 18% fewer reads than the batch in Part 1 of the project. This decrease can be explained by a lower clustering (597 k/mm²) during the sequencing procedure. However, a lower clustering leads to better quality of reads as it allows a better resolution. Isolates' reads numbers varied between 100 065 and 884 691 with an average of 418 854. This number was particularly low for isolates LSPQ4271, LSPQ4272, LSPQ4273 and LSPQ4274. This may be explained by the lower concentration of DNA in the DNA extracts of these isolates probably caused by a less effective DNA extraction for these strains. Whereas these values appear to be very low, the assembling metrics are more reflective of the sequencing quality. Assembly metrics are compiled in table 3.

The metrics values indicate a high quality of assembling and sequencing, except for the lowest coverage value of 14X. These values are similar to those obtained in Part 1 and sometimes even higher. As emphasized in Part 1, metrics appear to correlate with the number of reads obtained for each isolate. For example, the lowest coverage value (14X) is attributed to LSPQ4271 and LSPQ4272 which also have the fewest number of reads. However, this value was high enough to perform Blast analysis.

MA080904 exhibited a coverage value of 1012X, which is an average of the coverage of all contigs. This average does not, however, consider the length of each contig. Manual analysis revealed that the majority of contigs presenting with a coverage value above 1 000X, were smaller than 5 000 bp. Thus, for this isolate, the coverage value was not representative of the real genome coverage. After discarding contigs with coverage value above 1 000X, the new coverage value was 37X with a loss in assembly length of only 3% (2 123 274 bp to 2 061 860 bp). All these metrics are more representative of the average and are grouped in the row MA080904-1 of table 3.

LSPQ4282 had an assembly length of 6 793 942 bp, representing threefold the length of *S. pneumoniae* genome (2.16 Mbp). Manual Blast analysis revealed that a significant part of contigs corresponded to contamination with a non-*Streptococcus* bacterium, mostly *Bacillus subtilis*. *B. subtilis* genome size is 4.2 Mbp, which explained the assembly's length of 6 793 942 bp because it is nearly the sum of both genome sizes. In-house Python script allowed us to discard non-*S. pneumoniae* contigs (based on Blast results) and create a clean fasta file. This file was named LSPQ4282-1. After cleaning, assembly length dropped to a more regular value of 1 721 249 bp, proving the efficiency of the script.

Isolates	Reads numbers ^(1,2)
LSPQ4271	117 140
LSPQ4272	100 065
LSPQ4273	155 277
LSPQ4274	229 176
LSPQ4275	307 126
LSPQ4276	545 333
LSPQ4277	611 811
LSPQ4278	751 230
LSPQ4279	293 694
LSPQ4280	285 007
LSPQ4281	253 861
LSPQ4282	382 521
LSPQ4283	695 607
MA079938	256 005
MA080018	268 153
MA080211	475 948
MA080654	404 211
MA080879	438 695
MA080904	407 169
MA081113	591 387
MA081716	579 976
MA081892	494 610
MA082307	362 116
MA082394	295 082
MA082395	429 205
MA083920	729 967
MA086676	337 811
MA096946	283 092
MA097586	555 776
MA097921	884 691
MA098817	365 612
MA101545	515 979
Total reads	13 403 333

**Table 2** Paired end reads number generated during the MiSeq run.

⁽¹⁾ The total number (forward + reverse) for one isolate is two times the displayed value.

⁽²⁾ The four lowest values are presented in bold and correspond to samples with lowest DNA concentration.

Isolates	Assembly's length (bp)	Largest contig (bp)	N50	Mean coverage (X)
LSPQ4271	2 074 016	161 368	<b>49 807</b>	14
LSPQ4272	2 048 913	136 078	58 756	14
LSPQ4273	2 104 968	305 746	98 305	17
LSPQ4274	2 039 481	197 877	109 713	22
LSPQ4275	2 069 490	192 635	78 434	44
LSPQ4276	2 076 440	197 175	50 116	82
LSPQ4277	2 061 209	239 939	90 168	76
LSPQ4278	2 111 029	105 571	55 533	115
LSPQ4279	2 075 758	247 620	68 772	45
LSPQ4280	2 143 572	230 492	75 491	35
LSPQ4281	2 044 177	158 243	72 183	52
LSPQ4282	6 793 942	438 741	95 131	32
LSPQ4282-1	1 721 249	146 711	49 041	6
LSPQ4283	2 076 447	171 602	71 324	103
MA079938	2 108 330	214 530	74 514	45
MA080018	2 102 343	247 306	95 807	45
MA080211	2 054 380	246 678	140 406	83
MA080654	2 069 755	297 023	104 357	92
MA080879	2 103 519	345 799	136 064	85
MA080904	2 123 274	161 387	64 114	1012
MA080904-1	2 061 860	161 387	70 238	37
MA081113	2 066 217	276 495	85 471	97
MA081716	2 013 057	345 480	218 480	204
MA081892	2 043 092	299 061	126 588	104
MA082307	2 013 998	276 730	167 190	127
MA082394	2 063 773	202 017	101 286	58
MA082395	2 050 026	273 953	113 480	93
MA083920	2 066 049	328 634	86 181	131
MA086676	1 987 104	243 817	91 651	67
MA096946	2 035 090	263 351	136 846	58
MA097586	2 063 487	196 889	61 494	113
MA097921	2 129 092	355 253	162 090	171
MA098817	2 093 975	381 909	163 676	89
MA101545	2 075 501	286 061	162 953	296

Table 3 Summary of Spades assembly's metrics⁽¹⁾⁽²⁾.

⁽¹⁾ All statistics are based on contigs with a length  $\ge$  500 bp.

⁽²⁾ Numbers in green and red indicate the highest and lowest values, respectively. Isolates in bold are not included in this count because they were treated differently.
All metrics for this sample were below the average, demonstrating that cleaning the file caused a decrease in assembly quality. This is relevant as two thirds of the sample was constituted in *B. subtilis* sequences, due to a bigger genome. Both LSPQ4282 and LSPQ4282-1 were subjected to serotyping determination in order to see if an external contamination can affect the serotype results.

### Serotype determination using Blast queries

Blast searches were performed as previously described (Part 1). Serotype identification was mainly based on best score High-scoring Segment Pairs (HSP). HSP length and identities are also reported as supplementary information (Table 4). When multiple hits had high identity value (<0.5% compared to best hit) and HSP length (>10000 bp), all were retained for serotype attribution.

In 29 of 32 cases (90.6%), serotype was correctly determined with no ambiguity. All isolates except serotype 3 demonstrated a HSP length higher than 15 000 bp. The lower HSP length obtained for serotype 3 HSP can be explained by the smaller *cps* locus length in these isolates, which is the smallest *cps* locus of all serotypes (Bentley *et al.*, 2006). However, HSP identity was above 98% in every case.

MA101545 (serotype 35A) identification was classified as ambiguous due to the presence of 3 high score HSP including a serotype 35A HSP. Although the identity of this HSP is the highest among the 3 HSP, it cannot be chosen as a criterion of selection because the HSP length of serotype 35A is not the higher value among the 3 results obtained. MA101545 was the only isolate with this feature and more results are needed in order to draw conclusions about the use of HSP identity as the selection criterion in such cases.

MA080654 (serotype 22F) was identified at the serogroup level, with HSP for serotype 22F and 22A showing an identical score and identity value. Two different HSP with high score value were found for both serotypes (Part 1).

MA097586 (serotype 29) was the only isolate presenting a misidentification. A high identity value was obtained for serotype 35B but with a HSP length of only 10 656 bp, far below the usual length of correct HSP (above 15 000 bp; except for serotype 3). Serotype 35B and 29 are known to be genetically related, leading to cross-reactivity in antisera reactions (Bush *et al.*, 2015). Surprisingly, no significant hit with serotype 29 was found in Blast searches results, meaning that no relevant alignment could be made. Thus, serotype 29 *cps* sequence was manually blasted against MA097586 assembly. (Figure 1). The alignment resulted in 2 small HSP with low identity separated by a 2 800 bp gap demonstrating very low concordance between the two sequences. These results correlate with sequetyping results obtained for serotype 29. This strongly suggests that these issues are due to a lack of serotype 29 sequence with a unique serotype 29 sequence (*S. pneumoniae* strain 34373, Bentley *et al.*, 2006). Serotype 29 *cps* sequence diversity could be higher than other serotypes and the addition of more sequences should resolve this issue. A potential solution could be to isolate the *cps* loci obtained in this study and include them in the local WGS *cps* database.

### Pfizer IIR WI197603 Study report (Part 2 – Proof of concept)

	Querv	<i>cps</i> b	est hit subj	ect	HS	P ⁽¹⁾		
Isolates	contigs length (bp)	GenBank accession	Serotype	Length (bp)	ldentity (%)	Length (bp)	Expected serotype ⁽²⁾	ldentification
	72 200	CR931646	9L	17 618	99.98	15 948	01	Sorotupo
LSPQ4271	12 399	CR931647	9N	17 619	99.59	15 948	9L	Serotype
15001272	05 1 97	CR931655	11C	18 532	99.99	15 635	110	Sorotupo
LJFQ4272	33 187	CR931654	11B	17 082	99.2	14 934	IIC	Selotype
LSPQ4273	305 746	CR931669	17A	23 198	98.45	22 930	17A	Serotype
1004274	E2 774	CR931674	18F	22 849	100.0	21 674	105	Saratura
LSPQ4274	52774	CR931673	18C	21 819	97.49	12 646	101	Serotype
	F1 001	CR931686	24A	21 907	99.96	20 176	244	Saratupa
LSPQ4275	51 091	CR931688	24F	24 165	98.28	13 289	24A	Serotype
15001276	17.062	CR931690	25F	28 389	99.99	17 962	255	Sorogroup
L3FQ4270	17 902	CR931689	25A	28 466	99.96	17 962	ZJI	Serogroup
	217 512	CR931693	28F	21 839	99.98	21 835	285	Serotype
LJF Q4277	217 512	CR931692	28A	22 978	99.09	20 660	201	Serviype
	57 070	CR931696	32A	25 372	99.99	19 792	324	Serogroup
LJF Q4270	57 070	CR931697	32F	25 363	99.96	19 792	JZA	Serogroup
15004279	247 620	CR931699	33B	19 039	99.82	17 417	338	Serotype
251 Q4275	247 020	CR931701	33D	17 583	98.2	10 380	550	Scrotype
LSPO4280	49 489	CR931706	35C	19 741	99.99	18 532	350	Ambiguous
201 Q1200	15 105	CR931715	42	19 403	99.89	18 325	550	Ambiguous
LSPO4281	89 373	CR931714	41F	22 917	99.73	22 919	41F	Serotype
		CR931713	41A	22 520	97.13	19 367		,pc
LSPQ4282	17 973	CR931720	47A	17 250	100.0	16 052	47A	Serotype
LSPQ4283	32 343	CR931721	47F	16 064	99.99	15 105	47F	Serotype
MA079938	17 652	CR931635	4	20 936	99.98	17 652	4	Serotype
MA080018	1/0 192	CR931663	15A	18 517	99.75	18 517	154	Serotype
1111000010	140 192	CR931666	15F	22 405	99.22	12 386	134	Jerotype
MA080211	246 678	AJ006986	33F	17 340	99.98	16 435	33F	Serogroup
1111000211	240 070	CR931698	33A	18 409	99.98	16 107	551	Scrogroup

 Table 4 Pneumococcal serotype identification using Whole Genome Sequencing and Blast Queries.

### Table 4 (continued)

	Query	<i>cps</i> b	est hit subj	ect	HS	P ⁽¹⁾		
Isolates	contigs length (bp)	GenBank accession	Serotype	Length (bp)	ldentity (%)	Length (bp)	Expected serotype ⁽²⁾	Identification level
		CR931681	22A	22 591	97.85	12 897		
	100 110	CR931681	22A	22 591	97.69	7721	225	Sorogroup
WA080034	109 110	CR931682	22F	22 696	97.85	12 897	226	Selogloup
		CR931682	22F	22 696	97.69	7721		
N4A090970	227.050	CR931647	9N	17 619	99.99	17 619	ON	Saratupa
IVIA060679	227 059	CR931646	9L	17 618	99.26	17 620	911	Serotype
N4A080004	110 700	CR931634	3	10 337	99.75	5 293	2	Saratupa
WA080904	110 / 09	AF030373	23F	24 722	91.74	5 812	5	Serotype
N4A091112	222 027	CR931647	9N	17 619	99.99	17 619	ON	Saratura
WA061115	227 087	CR931646	9L	17 618	99.26	17 620	911	Serotype
MA081716	345 480	CR931634	3	10 337	99.75	8 961	3	Serotype
N4A091902	200.061	CR931707	35F	15 137	99.95	15 007	255	Saratupa
WA061692	299 001	CR931721	47F	16 064	99.46	6 666	50F	Serotype
MA082307	276 730	CR931634	3	10 337	99.75	8 961	3	Serotype
MA082394	196 027	CR931705	35B	16 658	99.97	15 516	35B	Serotype
N4A092205	272.052	CR931683	23A	21 475	99.98	21 475	224	Saratura
WA062595	275 955	CR931685	23F	22 330	99.42	12 830	ZSA	Serotype
N4A092020	220 624	CR931675	19A	18 617	98.19	14 095	104	Saratura
WA065920	520 054	AF094575	19A	18 754	98.14	14 095	19A	Serotype
MA086676	67 898	CR931634	3	10 337	99.74	8 961	3	Serotype
MA096946	263 351	CR931634	3	10 337	99.75	8 961	3	Serotype
	114 025	CR931705	35B	16 658	99.95	10 656	20	Micidontified
WAU97560	114 025	CR931714	41F	22 917	96.88	7 344	29	wisidentined
N4A007021	211 210	CR931675	19A	18 617	98.58	15 861	104	Saratura
IVIAU97921	511 219	AF094575	19A	18 754	98.51	15 745	19A	Serotype
N4A009917	291 000	CR931675	19A	18 617	98.58	15 861	104	Saratura
WA098817	201 909	AF094575	19A	18 754	98.51	15 745	19A	Serotype
		CR931706	35C	19 741	99.29	18 615		
MA101545	105 480	CR931715	42	19 403	99.23	18 408	35A	Ambiguous
		CR931704	35A	21 463	99.37	17 808		

⁽¹⁾ HSP = high-scoring Segment Pairs.



**Figure 1** Blast analysis of the MA097586 assembly with serotype 29 *cps* sequence showing the presence of several unmatched regions. Two separated HSP with low identity highlight the very low complementarity of the 2 sequences.

In summary, WGS resulted in 78% (25/32) identification at the serotype level, 13% (4/32) identification at the serogroup level, 6% (2/32) identification classified as ambiguous and 3% (1/32) of misidentification. In Part 1, 52% of isolates were identified at the serotype level and 48% at the serogroup level. As described in Part 1, a high degree of genetic similarities due to DNA polymorphism among single serotypes made some serotype identification difficult, specifically LSPQ4276 (25F/25A), LSPQ4278 (32A/32F), LSPQ4280 (35C/42), MA080211 (33F/33A) and MA080654 (22F/22A). The project (Parts 1 and 2) demonstrates that isolates were identified at the serotype level at 68% (36/53), at the serogroup level at 26% (14/53), as ambiguous at 4% (2/53) and as misidentified at 2% (1/53). These 53 isolates represent 32 different serotypes, as several isolates for the same serotype were tested to ascertain the robustness of the method. The true efficiency of the method, when considering only one isolate per serotype, yielded results of: 66% (21/32) identified at the serotype level, 25% (8/32) identified at the serogroup level, 6% (2/32) identified as ambiguous and 3% (1/32) misidentified.

PneumoCaT (https://github.com/phe-bioinformatics/PneumoCaT), a bioinformatics workflow designed for the serotyping of *S. pneumoniae*, was also tested. Results are presented in Table 5. PneumoCaT analysis was done for all isolates of this project. Considering each of the isolates, 79 % (41/52) were identified at the serotype level and 21 % were misidentified (11/22). Identification failed for 1 isolate due to the absence of *cps* sequence with enough coverage. This isolate was not considered for the statistics.

Isolato	Expected	Hit 1	Coverage	Hit 2	Coverage	Identification
Isolate	serotype	serotype	(%)	serotype	(%)	level
MA086676	3	3	99 98	36	29.05	Serotype
	5	3	55.50	50	25.05	Scrotype
MA096946	3	3	99.98	36	29.11	Serotype
MA081716	3	3	99.98	36	29.16	Serotype
MA080904	3	3	99.91	1	26.99	Serotype
MA082307	3	3	99.98	36	28.66	Serotype
MA079938	4	4	99.99	45	48.32	Serotype
MA097586	29	35B	99.99	34	46.81	Misidentified
MA096961	34	34	99.94	35B	50.31	Serotype
MA094205	10A	10A	99.99	10B	94.20	Serotype
MA095845	10A	10A	99.99	10B	94.31	Serotype
MA094933	10A	10A	99.99	10B	94.39	Serotype
MA091851	11A	11D	99.78	11A	99.75	Misidentified
LSPQ4272	11C	11C	96.06	11B	96.05	Serotype
MA094663	15A	15A	99.96	15F	80.57	Serotype
MA095336	15A	15A	99.99	15F	80.65	Serotype
MA096792	15A	15A	99.99	15F	80.66	Serotype
MA080018	15A	15A	99.95	15F	80.57	Serotype
MA093977	15A	15A	99.99	15F	80.61	Serotype
MA094560	15B	15C	99.99	15B	99.99	Misidentified
MA096033	15B	15C	99.99	15B	99.99	Misidentified
MA095997	15B	15C	99.99	15B	99.99	Misidentified
MA093020	16F	16F	99.99	28F	64.28	Serotype
LSPQ4273	17A	17A	97.84	41F	71.11	Serotype

**Table 5** Pneumococcal serotypes identification using Whole Genome Sequencing and PneumoCaTworkflow. The serotype determined after capsular typing variants analysis is presented in bold.

Isolate	Expected	Hit 1	Coverage	Hit 2	Coverage	Identification
LSPQ4274	18F	18F	99.98	18B	86.91	Serotype
MA097921	19A	19A	93.45	23B	51.30	Serotype
MA098817	19A	19A	93.44	23B	50.85	Serotype
MA079789	19A	19A	99.99	6E	52.82	Serotype
MA080288	19A	19A	99.99	6E	53.64	Serotype
MA080125	19A	19A	99.99	6E	56.69	Serotype
MA083920	19A	19A	93.59	6E	46.08	Serotype
MA094696	22F	22F	99.98	22A	90.99	Serotype
MA096962	22F	22F	99.21	22A	90.70	Serotype
MA080654	22F	22F	99.24	22A	90.95	Serotype
MA094689	22F	22F	99.24	22A	90.94	Serotype
MA082395	234	234	99.99	23F	77 02	Serotype
15P04275	244	244	99.82	24F	80.01	Serotype
MA096695	247	247	100.00	241	100.00	Misidantified
	240	246	00.00	240	00.00	Misidentified
LSPQ4276	255	254	99.99	255	99.99	Constantined
LSPQ4277	28F	28F	99.99	28A	99.99	Serotype
LSPQ4278	32A	32F	99.99	32A	99.99	Misidentified
LSPQ4279	33B	33B	99.99	33D	93.03	Serotype
MA080211	33F	33F	99.99	33A	96.45	Serotype
MA101545	35A	35C	99.99	42	99.99	Misidentified
MA082394	35B	35B	99.83	34	46.30	Serotype
LSPQ4280	35C	35A	99.94	35C	99.94	Misidentified

### Table 5 (continued)

Isolate	Expected	Hit 1	Coverage	Hit 2	Coverage	Identification
isolate	serotype	serotype	(%)	serotype	(%)	level
MA081892	35F	35F	99.99	47F	79.42	Serotype
LSPQ4281	41F	41F	99.99	41A	98.02	Serotype
LSPQ4282	47A			Failed	J ⁽¹⁾	
LSPQ4283	47F	47F	99.99	35F	88.64	Serotype
MA081946	7F	7F	100.00	7A	99.99	Serotype
LSPQ4271	9L	9N	99.80	9L	99.80	Misidentified
MA081113	9N	9N	99.99	9L	99.99	Serotype
MA080879	9N	9N	99.99	9L	99.99	Serotype

### Table 5 (continued)

⁽¹⁾ No *cps* sequence with coverage above 90% (in reads number).

In this second part of the project, the WGS run was performed with 32 samples and the quality of results was adequate for serotyping, despite a non-optimal clustering step and some DNA extract with low DNA concentration. Thus, it is realistic to estimate that 46 samples could be sequenced in a single run with optimal conditions and produce good results. This quantity of samples corresponds with the maximum number of samples in a single run of DNA extraction, which allows for cost optimization. Genome sequences obtained with this method could be used for further investigations (antibiotic resistance screening, sequence typing, etc.) which usually require other laboratory experiments such as PCR and thus would offset costs.

Given the results exposed in this report, it is clear that WGS alone is not sufficient for complete serotyping of isolates not identified at the serotype level. The Quellung method would be used to decide in such cases, adding additional costs to the method. However, as Blast results would serve as a guide for the use of antisera, the cost of Quellung method for these isolates would be dramatically lower than usual.

Two days are required for the preparation of the sequencing run from DNA extracts, considering an eight hour working day and following Illumina MiSeq sequencing protocol. Next, 3 days are necessary for the sequencing run itself. Downstream bio-informatics analyses will be automated with an inhouse pipeline (1 working day). These analyses and the manual analyses of the output data take one day to perform and to obtain a final serotype result. Overall, 5-6 days are required for serotyping *S. pneumoniae* from DNA extracts with the Whole Genome Sequencing method. In the low *S. pneumoniae* season, it will take more time to obtain serotyping results than using Quellung because it is necessary to batch the strains before starting a WGS batch. However when WGS will be used routinely at the LSPQ for numerous bacteria, *S. pneumoniae* serotyping using WGS may be more cost-effective.

### **Evaluation of the multiplex PCR CDC protocol**

A total of 77 different strains were tested in this part, representing 45 different serotypes. Several isolates with serotypes not included in the CDC protocol were tested in order to check for specificity. For these isolates, non-detection is considered a good result as they cannot be detected with this multiplex PCR protocol. Isolate serotype was determined: 30% (18/61) at the serotype level, 34% (21/61) at the serogroup level, 5% (3/61) at a subset level, 31% (19/61) not determined (expected results) and 0% (0/61) misidentified. Detailed results are listed in table 6.

Two different issues were highlighted in Part 1 of the project. The first one was the non-detection of the 280 bp amplicon expected with the 2 isolates of serotype 35A. It was suggested that the strains tested were genetic variants of the CDC strains of serotype 35A and that the primers 35A/35C/42 were unable to match our strains. In order to confirm the hypothesis, 5 new isolates of serotype 35A were tested at multiplex #7 PCR reaction (multiplex expected for positive reaction). All 5 isolates presented a positive amplification at 280 bp as expected by the protocol (Figure 2A). But a 250 bp nonspecific amplification was also observable in 4 of 5 isolates. The second issue was the presence of a 250 bp nonspecific amplification in 1 of the 2 isolates of serotype 34 tested. 5 new isolates of serotype 34 were tested as well at multiplex #7 PCR reaction. All isolates presented the expected amplification at 408 bp and 3 of 5 isolates also presented a nonspecific 250 bp amplification. Thus, it appears that a nonspecific amplification at 250 bp may occur at multiplex #7 PCR reaction. As it does not appear with all isolates, it seems that small genetic changes among these isolates could determine the presence or absence of this amplification. This nonspecific amplification was also present for serotype 42 (see report of part 1, Figure 17A)

A total of 121 strains were tested with multiplex PCR method in this project (Part 1 and Part 2), covering 83 serotypes. As expected, 16% (19/121) isolate serotypes were not determined because they are not included in the CDC multiplex PCR protocol. They will not be considered in the statistics in order to correctly evaluate method efficiency. Isolates were identified at the serotype level at 40% (41/102), at the serogroup level at 41% (42/102), at the subset level at 17% (17/102) and as misidentified at 2% (2/102). As described previously, several isolates with the same serotype were tested in order to evaluate the robustness of the method. Unfortunately, this does not reflect the true efficiency of the method. All results converge for the same serotype except for serotype 35A. However 5 out of 7 isolates were identified at the serotype level so it was considered that multiplex PCR was serotype-specific for this serotype. Considering only one isolate per serotype, results were: 34% (22/64) identified at the serotype level, 38% (24/64) identified at the serogroup level, 28% (18/64) identified at the subset level, and 0% (0/64) misidentified.

**Table 6** Pneumococcal serotype identification with multiplex PCR method. Non-specificamplifications are reported for each isolate tested.

Isolates	Serotype	Expected	Determined	Identification	Pres	ence of ampli	nonspec cons	cific
	oc. crype	amplification ⁽¹⁾	serotype	level	mPCR2 (≈500 bp)	mPCR3 (677 bp)	mPCR6 (850 bp)	mPCR7 (250 bp)
LSPQ3079	29	/	/	ND ⁽²⁾	Х		Х	
LSPQ3081	32F	/	/	ND ⁽²⁾	Х	Х		
LSPQ3089	41A	/	/	ND ⁽²⁾				
LSPQ3092	45	/	/	ND ⁽²⁾	Х	Х		Х
LSPQ3095	48	/	/	ND ⁽²⁾	Х	Х		
LSPQ3641	36	/	/	ND ⁽²⁾	Х	Х		
LSPQ3643	43	/	/	ND ⁽²⁾		Х	Х	
LSPQ4271	9L	7	9N/9L	Serogroup	Х	Х		
LSPQ4272	11C	/	/	ND ⁽²⁾	Х	Х		
LSPQ4273	17A	/	/	ND ⁽²⁾	Х	Х		
LSPQ4274	18F	4	18C/18F/18B/18A	Serogroup	Х	х		
LSPQ4275	24A	4	24F/24A/24B	Serogroup	Х			
LSPQ4276	25F	3	38/25A/25F	Subset				
LSPQ4277	28F	/	/	ND ⁽²⁾	Х		Х	Х
LSPQ4278	32A	/	/	ND ⁽²⁾	Х	Х		
LSPQ4279	33B	/	/	ND ⁽²⁾	Х	Х		Х
LSPQ4280	35C	7	35A/35C/42	Subset ⁽³⁾	Х	Х		
LSPQ4281	41F	/	/	ND ⁽²⁾	Х	Х		
LSPQ4282	47A	/	/	ND ⁽²⁾	Х	Х		
LSPQ4283	47F	6	35F/47F	Subset ⁽³⁾	Х	Х		
MA065427	16F	1	16F	Serotype		х		
MA073130	11F	/	/	ND ⁽²⁾				
MA080812	10B	/	/	ND ⁽²⁾				

### Table 6 (continued)

		Expected	Determined	Idontification	Pres	ence of	nonspe	cific
Isolates	Serotype	multiplex	serotype	level		ampres	mBCB6	mDCD7
		amplification			(≈500 bp)	(677 bp)	(850 bp)	(250 bp)
MA082483	5	6	5	Serotype		Х		
MA083042	19A	/	19A	Serotype	Х	х		
MA084138	19A	/	19A	Serotype	Х			
MA088547	27	/	/	ND ⁽²⁾		х		
MA093680	7F	2	7F/7A	Serogroup				
MA093772	18C	4	18C/18F/18B/18A	Serogroup		Х		
MA096520	1	5	1	Serotype		Х		
MA096566	11B	/	/	ND ⁽²⁾				
MA096954	14	5	14	Serotype				
MA097140	7F	2	7F/7A	Serogroup				
MA097827	9V	4	9A/9V	Serogroup				
MA098250	9N	7	9N/9L	Serogroup				
MA098599	6B	1	6A/6B	Serogroup				
MA098680	14	5	14	Serotype				
MA098806	9V	4	9A/9V	Serogroup				
MA099139	6C	1	6C/6D	Serogroup				
MA099472	6A	1	6A/6B	Serogroup				
MA099660	18C	4	18A/18B/18C/18F	Serogroup		х		
MA099752	28A	/	/	ND ⁽²⁾				
MA100130	3	1	3	Serotype				
MA100152	23F	5	23F	Serotype		Х		
MA100245	9N	7	9N/9L	Serogroup				
MA100658	15A	2	15A/15F	Serogroup				

Table 6 (continued)

		Expected	Dotorminod	Idoptification	Presence of nonspecific amplicons					
Isolates	Serotype	multiplex	corotypo	lovel		ampi	cons			
		amplification ⁽¹⁾	serotype	level	mPCR2 (≈500 bp)	mPCR3 (677 bp)	mPCR6 (850 bp)	mPCR7 (250 bp)		
MA100706	19A	1	19A	Serotype						
MA100764	19F	3	19F	Serotype						
MA100773	4	4	4	Serotype		х				
MA100780	22F	1	22F/22A	Serogroup						
MA100925	6C	1	6C/6D	Serogroup						
MA101024	6A	1	6A/6B	Serogroup						
MA101145	6B	1	6A/6B	Serogroup						
MA101159	23F	5	23F	Serotype		Х				
MA101323	1	5	1	Serotype		х				
MA101386	3	1	3	Serotype						
MA101680	19F	3	19F	Serotype						
MA101744	4	4	4	Serotype		Х				
MA101766	15A	2	15A/15F	Serogroup						
MA101978	19A	1	19A	Serotype						
MA101987	22F	1	22F/22A	Serogroup						

⁽¹⁾ Multiplex number (#1 to #8) in the sequence where a positive amplification is expected for this isolate.

⁽²⁾ Not detectable.

⁽³⁾ Defined as correct results obtained with PCR multiplex primers detecting a subset.

### Pfizer IIR WI197603 Study report (Part 2 – Proof of concept)



**Figure 2A** Electrophoresis profile obtained with the multiplex reaction 7 for the detection of serotype 34 and 35A. All reactions led to a positive amplification at the expected size. Nonspecific amplifications at 250 bp are visible for 7 of the 10 isolates tested.



**Figure 2B** Electrophoresis profile obtained with the multiplex reaction 2. Nonspecific amplifications at 500 bp are visible but do not correspond with a specific primers pair. Bands corresponding to these amplifications also appear thinner and dimmer compared to correct amplifications (7F and 15A).

Pfizer IIR WI197603 Study report (Part 2 – Proof of concept)

LKE	8+		KB	Second Groups Ministry		KB+
	<b>9N 14 1</b>	23F 5	4 28A 23F	4 18C 11B	18C 19F 27	1 9N
677 bp (35B)	= -		=			$- \equiv$
304 bp (19F) ———			11 K.S. 1997 🖂		-	=
-						
-				same stories and		

**Figure 2C** Electrophoresis profile obtained with the multiplex reaction 3. Nonspecific amplifications at 677 bp (35B) are visible. Bands corresponding to these amplifications appear thinner compared to a correct amplification (19F).

	KB+	29	17A	36	19B	43	19C	45	28F	48	32A	11C	32F	11F	33B	16A	35C	KB+
850 bp -	=	-																11
	-																	-
	-																	
										-								

**Figure 2D** Electrophoresis profile obtained with the multiplex reaction 6. Nonspecific amplifications at 850 bp are visible but do not correspond to a specific primers pair.



**Figure 2E** Electrophoresis profile obtained with the multiplex reaction 7. Nonspecific amplifications at 250 bp are visible but do not correspond to a specific primers pair.



**Figure 2F** Electrophoresis profile obtained with the multiplex reaction 2 for non *S. pneumoniae* isolates. Multiple nonspecific amplifications are visible but no *cpsA* amplification.

### Pfizer IIR WI197603 Study report (Part 2 – Proof of concept)

Nonspecific amplifications were present in many reactions and mainly in 4 multiplex PCR reactions. At the multiplex PCR 2, 500 bp nonspecific amplifications were often visible (Figure 2B). These amplifications do not correspond to any primer pairs but are close to other amplifications (434 bp and 599 bp) and could be confounded with one of them, leading to a misidentification. Nevertheless, nonspecific amplifications always produce thinner and dimmer bands, easily distinguished from correct amplifications. This was also the case for multiplex PCR 6 (nonspecific amplification at 850 bp, Figure 2D) and for multiplex PCR #7 (nonspecific amplification at 250 bp, Figure 2E). In multiplex PCR reaction #3, nonspecific amplifications at 677 bp were present in many serotypes (Figure 2C). Unfortunately, this corresponds to the amplification for serotype 35B, which could potentially lead to a misidentification when used routinely. Again, these amplifications produce thinner and dimmer bands unlike positive amplifications. The presence of nonspecific amplification is summarized in Table 6. Among the 61 isolates tested, 31% (19/61) showed nonspecific amplifications at multiplex PCR #2, 44% (27/61) showed nonspecific amplifications at multiplex PCR #3, 5% (3/61) showed nonspecific amplifications at multiplex PCR #6 and 5% (3/61) showed nonspecific amplifications at multiplex PCR #7. For routine analysis, nonspecific amplification may lead to an unacceptable level of false serotype identification.

Non *S. pneumoniae* (*S. pseudopneumoniae* and *S. mitis*) were also tested for each multiplex. In all reactions, *cpsA* amplification (intern control at 160 bp) never occurred. This cannot completely distinguish these streptococci from *S. pneumoniae*, because some *S. pneumoniae* serotypes also do not lead to *cpsA* amplification (serotype 25F and 38). Several non-specific amplifications also occur for these isolates (Figure 2F). This could be used as the discrimination criteria as no *S. pneumoniae* isolates demonstrated such an amplification pattern. Moreover, *S. pneumoniae* strains are generally susceptible to optochin in contrast to other streptococci (Jorgensen *et al.*, 2015). This test is routinely performed on *S. pneumoniae* strains.

Sequential multiplex PCR is a user-friendly and fast serotyping method because this technology is common to all microbiology laboratories. However, depending on the number of multiplex PCR needed for the identification of an isolate, the time required for identification can dramatically increase. As PCR are done sequentially, a limited number of PCR can be performed in a single day. The time required can range from 2 days for an isolate detected in the 1st or 2nd multiplex, to 5 days for an isolate identified in the 8th multiplex reaction. As most common serotypes are detected in the first reactions, the average time for identification with sequential multiplex PCR would be 2.75 days according to serotype distribution in Quebec in 2016.

### Evaluation of the sequetyping method based on the cpsB gene

We successfully sequenced 53 isolates of the 55 S. pneumoniae isolates tested. The average sequence length was 799 bp, which is shorter than the average length in Part 1 (942 bp) but still longer than 732 bp, the length of the sequence used by Leung *et al.*, (2012) to test all their serotypes. These 53 isolates were tested against the NCBI database with the same protocol used in Part 1. Detailed results are reported in Table 7. Approximately 53% of the isolates were identified at the serotype level (28/53), 23% (12/53) were identified at the serogroup level, 7% (4/53) were identified as ambiguous and 17% (9/53) were misidentified. Together with Part 1 results, 121 isolates were tested with the sequetyping method. Half of the strains (60/121) were identified at the serotype level, 17% (21/121) were identified at the serogroup level, 12% (14/121) were identified as ambiguous and 21% (26/121) misidentified. As described in Part 1, isolates of serotype 18C were misidentified but showed only 1 mismatch with the 18C reference sequence. The isolate of serotype 19F was also misidentified showing a single mismatch with 19F reference sequence. Leung et al. (2012) correctly identified 6 of 7 strain of serotype 19F in their study. It is possible that genetic variations in our isolate have caused this change in the sequence and the misidentification. The same conclusion can be drawn with serotype 17A, showing no significant hit with the 17A reference sequence whereas Leung et al., (2012) identified their strain of serotype 17A as ambiguous. In Part 1 of the project, a transcription error occurred for strains MA083042 and MA084138 (previously identified as 19B and 19C, respectively). Both strains were identified as serotype 19A with Quellung. This was considered in the final statistics.

Seventy-nine serotypes were tested in this study. Considering only one isolate per serotype, the sequetyping method allows identification at 50% (39/79) at the serotype level, 15% (12/79) at the serogroup level, 15% (12/79) as ambiguous and 20% (16/79) misidentified. Only one isolate of serotype 25F did not yield *cpsB* amplification but this was predicted by Leung *et al.* (2012).

In Part 1, only 1 of 2 isolates of serotype 29 yielded an amplification of the *cpsB* gene. Five more isolates of serotype 29 were tested and all yielded amplification. This suggests that the non-amplifiable isolate has some genetic characteristics preventing the *cpsB* amplification and that this is not common to most of the isolate of serotype 29 in Quebec. All of these isolates were misidentified as described in Part 1, with perfect matches with serotype 35B and 35C sequences and poor sequence identity with serotype 29 reference sequences (83% identity). This means that *S. pneumoniae* strains of serotype 29 in Quebec are genetically distant from serotype 29 sequences available in the NCBI database. This correlated with the results found with WGS for serotype 29. This mistake could be avoided by creating a local *cpsB* sequence database incorporating serotype 29 sequences.

Only one non *S. pneumoniae* strain (*S. pseudopneumoniae*) led to the amplification of *cpsB*. This sequence was associated with serotype 20 with an identity of 96%. In this study, this is the only isolate with a best hit with an identity lower than 97%. Thus, non *S. pneumoniae* strains could be discarded and not be identified as a proper *S. pneumoniae* by the sequetyping method if we apply an identity criterion of  $\geq$  97%.

	<i>cps</i> best NCE	31 hit subject		Exported	Identification
Isolates	Genbank accession	Serotype	HSP ⁽¹⁾ identities	serotype ⁽²⁾	level
LSPQ4271	CR931646	9L	954/955	9L	Serotype
	CR931647	9N	953/955		
LSPQ4272	CR931655	11C	929/930	11C	Serogroup
	CR931654	11B	929/930		
LSPQ4273	CR931649	10A	925/925	17A	Misidentified
			No significant hit with 17A		
LSPQ4274	CP002121	11A	933/933	18F	Ambiguous
	CR931674	18F	933/933		
	CR931656	11D	933/933		
LSPQ4275	CR931686	24A	934/934	24A	Serotype
	CR931712	40	907/934		
LSPQ4277	CR931693	28F	947/947	28F	Serotype
	CR931692	28A	946/947		
LSPQ4278	CR931697	32F	932/932	32A	Serogroup
	CR931696	32A	932/932		
LSPQ4279	CR931699	33B	918/919	33B	Serotype
	CR931701	33D	915/919		
LSPQ4280	CR931706	35C	934/934	35C	Serogroup
	CR931705	35B	934/934		
LSPQ4281	CR931714	41F	933/934	41F	Serotype
	AE005672	4	923/934		
LSPQ4282	CR931720	47A	916/917	47A	Serotype
	CP016633	4	882/917		
LSPQ4283	CR931721	47F	939/939	47F	Ambiguous
	CR931707	35F	939/939		
MA080812	CR931650	10B	961/961	10B	Serotype
	CR931649	10A	915/961		
MA082483	CP000918	5	931/931	5	Serotype
	JF911531	19F	911/931		
MA088547	CR931691	27	858/858	27	Serotype
	CR931695	31	840/858		
MA093680	CR931643	7F	918/918	7F	Serogroup
	CR931640	7A	918/918		
MA093772	CR931672	18B	939/940	18C	Misidentified
	CR931673	18C	938/940		

 Table 7 Pneumococcal serotype identification using the sequetyping approach.

Table 7 (co	ntinued)
-------------	----------

	<i>cps</i> best NCE	31 hit subject		Europeterd	Identification
Isolates	Genbank accession	Serotype	HSP ⁽¹⁾ identities	serotype ⁽²⁾	level
MA096520	FQ312042	1	945/945	1	Serotype
	JF911531	19F	936/945		
MA096566	CR931655	11C	910/913	11B	Serogroup
	CR931654	11B	910/913		
MA096954	FQ312029	14	857/858	14	Serotype
	CR931632	1	852/858		
MA097140	CR931643	7F	931/933	7F	Serogroup
	CR931640	7A	931/933		
MA097827	AF402095	9V	947/948	9V	Serotype
	CR931645	9A	946/948		
MA098250	CR931647	9N	910/910	9N	Serotype
	CR931646	9L	909/910		
MA098599	KC832411	6F	889/891	6B	Serogroup
	JF911503	6B	889/891		
	JF911497	6A	889/891		
MA098680	FQ312029	14	897/898	14	Serotype
	JF911531	19F	890/898		
MA098806	AF402095	9V	915/916	9V	Serotype
	CR931645	9A	914/916		
MA099139	JF911515	6C	915/915	6C	Serogroup
	HM171374	6D	915/915		
MA099472	JF911496	6A	925/925	6A	Serotype
	CR931639	6B	923/925		
MA099660	CR931672	18B	941/941	18C	Misidentified
	CR931673	180	940/941	204	6
MA099752	CR931692	28A	923/923	28A	Serotype
144400400	CR931693	28F	922/923	2	Canadana
MA100130	FQ312041	3	910/910	3	Serotype
N4A1001E2	JQ653094	20	899/911	225	Ambiguous
WA100152	CP016633	14	921/921	23F	Ambiguous
	CP016032	12	921/921		
	CPU10227	21	921/921		
		255	921/921	<u></u>	<b>C</b>
MA100245	CR931647	9N	937/937	9N	Serotype
	CR931646	9L	936/937		

	cps best NCBI hit subject			Exported	Identification	
Isolates	Genbank accession	Serotype	HSP ⁽¹⁾ identities	serotype ⁽²⁾	level	
MA100658	CR931663	15A	913/914	15A	Serotype	
	CR931666	15F	906/914			
MA100764	JF911522	19F	901/902	19F	Serotype	
MA100773	AE005672	4	907/907	4	Serotype	
	AF402095	9V	898/907			
MA100780	LT594600	22F	920/920	22F	Serogroup	
	CR931681	22A	920/920			
MA100925	JF911515	6C	919/920	6C	Serogroup	
	HM171374	6D	919/920			
MA101024	JF911496	6A	944/946	6A	Serotype	
	CR931639	6B	942/946			
MA101145	LT594599	6E ⁽³⁾	887/887	6B	Serogroup	
	KT907353	6B	887/887			
MA101159	CP016633	14	919/920	23F	Ambiguous	
	CP016632	12	919/920			
	CP016227	21	919/920			
	FM211187	23F	919/920			
MA101323	FQ312042	1	929/935	1	Serotype	
	JF911531	19F	917/930			
MA101386	FQ312041	3	938/942	3	Serotype	
	JQ653094	20	925/943			
MA101680	LN831051	10A	874/894	19F	Misidentified	
	JF911531	19F	873/892			
MA101744	AE005672	4	916/917	4	Serotype	
	AF402095	9V	907/917			
MA101766	CR931663	15A	924/927	15A	Serotype	
	CR931666	15F	917/927			
MA101978	JF911519	19A	918/918	19A	Serotype	
MA101987	LT594600	22F	915/915	22F	Serogroup	
	CR931681	22A	915/915			
MA098344	CR931706	35C	948/949	29	Misidentified	
	CR931705	35B	948/949			
	CR931694	29	711/849			

### Table 7 (continued)

	cps best NCBI hit subject			Exported	Identification
Isolates	Genbank	Serotype	HSP ⁽¹⁾ identities	serotype ⁽²⁾	level
	accession	,,			
MA097586	CR931706	35C	943/943	29	Misidentified
	CR931705	35B	943/943		
	CR931694	29	711/849		
MA100224	CR931706	35C	934/934	29	Misidentified
	CR931705	35B	934/934		
	CR931694	29	711/849		
MA101320	CR931706	35C	942/942	29	Misidentified
	CR931705	35B	942/942		
	CR931694	29	711/849		
MA098505	CR931706	35C	946/946	29	Misidentified
	CR931705	35B	946/946		
	CR931694	29	711/849		
ID111828	JQ653094	20	901/935	S. pseudo	pneumoniae
	JQ653093	20	901/935		
	CR931679	20	901/935		
	CR931661	13	901/935		

### Table 7 (continued)

⁽¹⁾ HSP = High-scoring Segment Pairs.

⁽²⁾ Expected serotype according to Quellung reaction.

⁽³⁾ Serotype 6E has been defined as a serotype 6B subtype cross-reacting with 6B-specific antiserum (Ko *et al.*, 2013)

Two steps are required for the sequetyping method. The first is the *cpsB* amplification and purification step, involving commonly used methods such as PCR and gel electrophoresis. This step is completed in 1 day although it is necessary to consider putative repeats for negative samples. The second step, sequencing and data management requires 2 additional days. Considering strain culture and DNA extraction, the sequetyping method allows for the determination of serotypes in a total of 4-5 days.

### Discussion

The goal of this report was to evaluate 3 different DNA-based methods for the serotyping of *Streptococcus pneumoniae* for a possible replacement of the current method routinely used (Quellung method) at the LSPQ in the context of provincial surveillance. Information from Part 1 of this project (Development) and from Part 2 was gathered in order to draw a conclusion about the method most likely to replace the Quellung method. All information is presented in Table 8. Only one isolate per serotype was considered for the final data presentation.

Before summarizing the advantages and disadvantages of the different methods, it is important to note that none of these methods could completely replace the gold standard Quellung method, particularly during the first period of transition. As shown in this report, none of the tested methods provided 100% correct identifications and it would not be prudent to completely trust these results without a period of parallel testing with two methods (Quellung and the chosen molecular method). Thus it appears that the Quellung method will continue to be used and the DNA-based method could serve as a guide for the selection of which antisera to use. Therefore, the precision of the results given by the method will impact the downstream Quellung reactions, a higher precision leading to higher cost effectiveness. Finally, not all antisera are available at the LSPQ and 10-15% of isolates cannot be identified in the provincial laboratory. Currently, these isolates are sent to the NML for identification. An effective molecular method used routinely may decrease the number of strains transferred to the NML, and thus reduce the overall turnaround time.

The first method described here is Whole Genome Sequencing (WGS). It is the most technically difficult method to use because it requires several delicate processes. It is also the most expensive method but cost will likely decrease with the improvement of sequencing technology and cost of reagents. Bioinformatics pipeline can also be laborious to analyse given the amount of data generated. Nevertheless, automatic bioinformatics analyses would be easily implemented. Kapatai *et al.*, (2016) developed such a pipeline for serotyping *S. pneumoniae* with WGS. This method does not rely on genome assembling and performs raw reads alignments on a *cps* sequence database. The strength of the workflow is the use of a second step for the identification of ambiguous serotypes or serogroup (such as 22F/22A). SNPs analysis, loss-of-function mutations and other parameters are checked in order to determine the serotype.

There are many advantages to WGS. Firstly, this is the most reliable method among the 3 tested. Indeed, 94% of the isolates tested were identified at the serogroup (26%) or serotype level (68%). Isolates identified at the serogroup level would require the use of antisera to confirm the serotype with the Quellung reaction, directly targeting the serotypes given by the WGS. The ambiguous result could be easily confirmed as well. PneumoCaT, a bioinformatics workflow designed for the serotyping of *S. pneumoniae*, gave less reliable results than our own method with several misidentifications inside some serogroups (28%). Interestingly, it gave the correct serotype for 22F isolates where our method only determined the serogroup. Thus PneumoCaT could be used in cases where only serogroup is determined. In order to confirm this, it is recommended that this be tested on several isolates identified at the serogroup level by our pipeline.

### Pfizer IIR WI197603 Study report (Part 2 – Proof of concept)

In this report, serotype 29 was the only serotype misidentified among the 32 tested; it was identified as a serotype 35B. This is a known issue as serotype 35B and 29 are genetically related. However the poor alignment with the serotype 29 reference sequence showed that the serotype 29 isolates from Quebec are genetically distant. This problem could be solved by adding the cps sequence from MA097586 to the cps database. Other serotype 29 strains should be tested to confirm this result, and thus added these new sequences to the *cps* database. Finally, serotype 29 has a very low incidence in Quebec (0.2% in 2016) so this problem will occur only occasionally. The second advantage is that the huge amount of data generated with WGS will eventually serve for other purposes such as Multi Locus Sequence Typing (MLST) or antibiotic resistance gene detection. MLST is a powerful tool allowing to follow the evolution of clonal complexes across the province. Antibiotic resistance genes (mefA and ermB) are screened at the LSPQ depending on erythromycin MIC results. From 2010 to 2016, this concerned 31% of the S. pneumoniae strains received at the LSPQ. The detection PCR could be easily replaceable by an exhaustive search of *mefA* and *ermB* sequences in the genome. Actually, this method would be more sensitive because small mutations which could affect PCR (mainly in the primers sequences) would barely affect blast results. Thus, the relative WGS cost per strain could decrease with the extensive use of the data generated.

Unlike WGS, sequential multiplex PCR and sequetyping are designed to target *cps* capsule genes. The data generated with these methods can only be used to determine a serotype. Multiplex PCR is the easiest and fastest method to use. As specified in Part 1 of this project, the multiplex designed could be adapted to provide a better match with the local serotype incidence. Unfortunately, this cannot be easily achieved because redesigning the combination of primers would be necessary. This would be very difficult to achieve because of amplicon size or putative cross reactivity between primers and optimization would be necessary.

Multiplex PCR is the only molecular method which requires human interpretation. Electrophoresis gel reading by eye can be interpreted in different ways and precision is not always sufficient to draw conclusions about the exact size of amplicons. This is an important aspect because of the presence of nonspecific amplifications which could lead to interpretation errors. Nevertheless, some nonspecific amplification is recurring and can be identified with ease. A significant part (~50%) of isolates is identified at the serogroup or subset level and would require downstream identification with Quellung. Non detectable serotypes using PCR method have to be taken into account for downstream Quellung identification, which represents a substantial portion of isolates (16%, 19/121) of serotypes tested in the study. However, these are rare serotype and their incidence is very low in Quebec.

The final DNA-based method tested in this project is the sequetyping method developed by Leung *et al.*, (2012). This method is based on the sequencing of unique sequences inside the *cpsB* gene. The method is very inexpensive, easy to use and is not impacted by serotype variation over time. Unfortunately, this is the method with the most misidentified serotypes (21%, 26/121). Moreover, even if 50% of serotypes were correctly identified, the second best HSP often has 1 or 2 mismatches with the best HSP. As explained in Part 1 of the project, intra-specific variations in *cpsB* gene could easily bias these results in an unpredictable way (Varvio et *al.*, 2009). Thus Quellung identification would always be necessary. The existence of an independent curated *cpsB* sequences database would help to improve results.

### Pfizer IIR WI197603 Study report (Part 2 – Proof of concept)

### Table 8 Summary of the molecular methods used for S. pneumoniae serotyping.

				Serotyping resu	ults (concorda	nce with Quellu	ıng)
Methods	Advantages	Disadvantages	Serotype	Serogroup	Subset ⁽¹⁾	Ambiguous	Misidentified
WGS (32 different serotypes)	<ul> <li>Includes all serotypes</li> <li>Additional information obtained at the same time (multi-locus sequence type, antimicrobial resistance) are useful for other studies</li> <li>Identification of putative vaccine target and serotyping evolution analysis</li> </ul>	<ul> <li>- Laborious</li> <li>- Expensive</li> <li>- Large amount of data to manage</li> <li>- Needs bioinformatics setup</li> <li>- Time consuming</li> </ul>	66% (21/32)	25% (8/32)	N/A	6% (2/32)	3% (1/32)
<b>Sequential multiplex PCR⁽²⁾</b> (83 different serotypes)	<ul> <li>Method easily achievable</li> <li>Serotype easily determined</li> <li>Straightforward</li> </ul>	<ul> <li>Significant nonspecific amplification</li> <li>To be customized according to local epidemiology</li> <li>Detection of known serotypes</li> <li>Not useful for all serotypes</li> <li>Possibility of cross-reactions</li> <li>Relatively expensive</li> </ul>	34% (22/64)	38% (24/64)	28% (17/64)	N/A	0% (0/64)
Sequetyping (79 different serotypes)	- Rapid - Easy to set up - Inexpensive	<ul> <li>Not useful for all serotypes</li> <li>False assignment of serotype due to potential for gene exchange</li> <li>Method based on public databases</li> <li>Necessity of a <i>cpsB</i> curated bank</li> </ul>	50% (39/79)	15% (12/79)	N/A	15% (12/79)	20% (16/79)

⁽¹⁾ Defined as correct results obtained with PCR multiplex primers detecting a subset, for example 33F/33A/37 (reaction 2).

⁽²⁾ Not determinable serotypes were not considered for the statistics.

### Conclusion

The goal of this report was to evaluate the potential of 3 DNA-based methods for serotyping *Streptococcus pneumoniae* and provide data for the possible replacement of the actual serotyping method in use, the Quellung method. The most important aspects to consider for each method are the cost and the precision in serotype identification.

Sequetyping is the most attractive method because of its very low cost. Unfortunately, we would not recommend such a method due to the high number of misidentified serotypes generated. This issue could be resolved in the future, with an increase in the number of sequences in public databases and through the creation of a curated *cpsB* database. This method cannot be implemented routinely at the present time.

Multiplex PCR was evaluated as an efficient method with no misidentified serotypes. This was also the easiest method to achieve routinely. An unacceptable level of nonspecific amplification occurred which could lead to incorrect identifications. Overall, 4 different types of nonspecific amplifications occurred (usually with a thinner and dimmer band) and those nonspecific amplifications may be a source of error (misidentification of serotype). Also, the proportion of serotype identified at the serotype level is low, which means that this method will always rely on the Quellung method for the exact identification of serotypes and will never completely replace it. Instead, it could serve as a guide to perform more effective Quellung method. Finally, this method is more costly than it initially appears and its efficiency depends on epidemiological data. The cost of this method is also subject to serotype replacement.

WGS proved to be the best molecular method among the three methods tested. Only one misidentification (serotype 29) due to local genetic variations was encountered. Moreover, few or no downstream Quellung reactions were needed in this method. Unfortunately, this is currently the most expensive method and the least convenient to perform. The price will continue to decrease with the diminution in material costs and the use of genome information for other purposes. Finally, WGS does not depend on serotype circulation or replacement and performance should not be affected over time. Currently, using WGS only for serotyping in *S. pneumoniae* surveillance is too expensive, however identification of antibiotic resistance genes may be a possible approach to improve cost-effectiveness.

Multiplex PCR seems to be an acceptable option as it is easy to routinely implement. However, multiple nonspecific amplifications may affect the quality of the results and this method still relies on Quellung because numerous isolates only identify at serotype or subset level. WGS could become more attractive with competitive prices. This method provides excellent results for *S. pneumoniae* serotyping and is recommended as a replacement or alternative method for the gold standard.

Before implementation, the recommended DNA-based method, WGS, should be evaluated on *S. pneumoniae* strains received at the LSPQ for a determined period in parallel with the Quellung method to assure the quality of the data in a routine context. Non-serotyping *S. pneumoniae* strains were not tested in the project. It will be relevant to test those strains using WGS.

### Acknowledgements

This work was supported by Grant IIR number WI197603 from Pfizer Canada.

We wish to thank Irene Martin and Walter Demczuk from NML for sharing *S. pneumoniae* strains.

We thank Maureen Hastie from LSPQ for English revision

### References

Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics **29**, 1072–1075.

Leung, M.H., Bryson, K., Freystatter, K., Pichon, B., Edwards, G., Charalambous, B.M., and Gillespie, S.H. (2012). Sequetyping: Serotyping *Streptococcus pneumoniae* by a Single PCR Sequencing Strategy. J. Clin. Microbiol. **50**, 2419–2427.

Bentley, S.D., Aanensen, D.M., Mavroidi, A., Saunders, D., Rabbinowitsch, E., Collins, M., Donohoe, K., Harris, D., Murphy, L., Quail, M.A., et al. (2006). Genetic Analysis of the Capsular Biosynthetic Locus from All 90 Pneumococcal Serotypes. PLoS Genet **2**.

Bush, C.A., Cisar, J.O., and Yang, J. (2015). Structures of Capsular Polysaccharide Serotypes 35F and 35C of *Streptococcus pneumoniae* Determined by Nuclear Magnetic Resonance and Their Relation to Other Cross-Reactive Serotypes. J. Bacteriol. **197**, 2762–2769.

Varvio, S.L., Auranen, K., Arjas, E., Mäkelä, P.H. 2009 Evolution of the capsular regulatory genes in *Streptococcus pneumoniae*. J. Infect. Dis. **200(7)**:1144-51.

Sims, D., Sudbery, I., Ilott, N.E., Heger, A., and Ponting, C.P. (2014). Sequencing depth and coverage: key considerations in genomic analyses. Nat. Rev. Genet. 15, 121–132.

James H. Jorgensen, Michael A. Pfaller, Karen C. Carroll, Guido Funke, Marie Louise Landry, Sandra S. Richter, David W. Warnock. Manual of Clinical Microbiology. 2015. 11th edition, **22**, 383-402.

Kwan Soo Ko, Jin Yang Baek and Jae-Hoon Song (2013). Capsular Gene Sequences and Genotypes of "Serotype 6E" *Streptococcus pneumoniae* Isolates. J. Clin. Microbiol. **51(10)**: 3395-3399.

### <u>Title</u>

Serotyping of Streptococcus pneumoniae invasive strains using molecular biology tools

### <u>Authors</u>

Florian Mauffrey¹, Éric Fournier¹, Christine Martineau¹, Simon Lévesque¹, Sadjia Bekal¹, Marc-Christian Domingo¹, Walter Demczuk², Irene Martin², Florence Doualla-Bell¹, Cécile Tremblay³, Jean Longtin¹, and Brigitte Lefebvre¹

### **Affiliations**

1) Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, QC, Canada

2) National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada

3) Université de Montréal, Montréal, QC, Canada

### Objectives

Streptococcus pneumoniae is a major cause of pneumonia, meningitis and other pneumococcal infections. Over 90 serotypes have been described so far. The Quellung reaction is the gold standard test for *S. pneumoniae* serotyping. From a public health perspective, accurate serotyping of *S. pneumoniae* is essential to monitor the serotype replacement following the introduction of Pneumococcal Conjugate Vaccines. Unfortunately, this method is costly, time-consuming and dependent on human interpretation. In this study, we evaluated the efficiency of three different molecular serotyping methods as an alternative to the Quellung method.

### Methods

One hundred twenty-one *S. pneumoniae* strains representing 83 serotypes were serotyped with a sequential multiplex PCR assay (CDC protocol) and a sequence typing assay (sequetyping) based the *cpsB* gene sequence. Furthermore, 53 *S. pneumoniae* strains representing 32 serotypes were serotyped with whole genome sequencing (WGS) assay using an in-house pipeline and the bioinformatics tool PneumoCat. The serotype of all these strains was previously identified by the Quellung method.

### Results

The proportion of serotypes identified using sequential multiplex PCR to the serotype level was too low (34%) to use as an alternative to the Quellung method. Moreover, a large proportion (23%) of strains was not typeable by the PCR assay. Although the sequetyping is currently the most economical method, it exhibited a high number of misidentified serotypes (20%) and ambiguous results (15%). The WGS-based serotyping methods using our inhouse pipeline exhibited the best performance as they predicted capsular types at serotype and serogroup levels for 91% (66% at the serotype level) of the strains tested with only one misidentified serotype. In contrast, PneumoCaT results revealed several misidentifications inside serogroups (21%).

### Conclusion

WGS could be considered as a potent tool for *S. pneumoniae* serotyping and be useful for epidemiological purposes. Moreover, data generated can be used for further investigations such as antibiotic resistance genes characterization or multilocus sequence typing.

### Acknowledgement

The project was funded by Pfizer Canada (grant IIR, WI97603).

# Serotyping of Streptococcus pneumoniae invasive

# strains using molecular biology tools

<u>Floin Maufre</u> Érc Fourn er Chrs ine Mrt neau Smon Léve que Sadjia Bekl Mac-Chitan Domingo Wler Dmcuk rene Mrt n Flo ence Doua la Bell C cie Tremblay Jean Long in and Brgite Lef byre

L bor to re de an é pub iq e u Qué ec ns i ut n t onal e an é pub i ue du Qu bec a nt -Anne de Bel vue QC Ca ada Na i nal Mi rob o ogy Lab ra ory Pub ic Helh Agency of Can da Wi nip g MB Can da Un v rs té de Mon ré l Mon r al QC C nada

## Background

S poocu pn um nae s ne of the major c us s f neumo ia men ng t s a d o her pn umoc ccl nf cto s in y ung c i d en and he e d rly D t rm na i n f S p e mon aes rot pe s of h gh m or an e in p bl c h a th to mon or pu a i e se otype ep a ement f low ng t e n r duc on of PCVs (P eumo oc al Co juga e Vac i e) nd t e f i acy of mm n za i n pr gr ms T e pn umoco c l s roty e is de erm n d by t e poly ac ha de c mpos ion of he ap ule Mo e han 90 S p eum n ae c psu ar poly ac ha de (CP) types e i t re u t ng n a a ge v rety of se otyp s e ong ng o 6 d f e ent er gr ups Al gen s r l ted o he c ps le syn he is a hway a e gr uped n a s ng e CPS op ron Pr s nce or a s nce of g nes sp c f c ge es o ga i at on as we l as s ec f c eq en e v ra i ns o he i f re t er types and can be u ed or th ir i en f ca on





The Q el ng m th d r mans the god t nd rd se otyp ng m t od w dely us d n s rv i an e f *S p eu on ae* A th ugh his m th d s v ry e f c i e t is lo co tly t me co sum ng a d ot ot lly r l a le ue to h m n i te p e at on

The objec ves of this sudy were one auare hereforency of different molicular sing methods a multiplex. CR along a wh bared equation equation of all disquity is gradient ended to equate the ended of the ended of

### Methods

S. pneumoniae s ra ns – S ro yp d by he Que ng me hod Inc ud ng 6 no pneumon ae st a ns S. M tis and S. pseudopneumoniae)



The b st de tfctonrsu swere ot in dus ng he whoege ome e uen ig pp oah flow ng a g nome as embig taeg. M rever als rotps re coed wh his me hod nie mu ip ex PCR and se uetyp ng The  $\phi$  e uen es da a ase cn lo e ad p ed o lo al i ua ons In our sudy we fond ht the srty e 9 p equince n Québ c di er d r m puls ed se uen es u ed n ohr a abses au ig mi i en i cai ns A dton of a lo al e otype 29  $\phi$  s que ce in he da ab se ol ed t e pr b em WGS s rotyp ng ap ro ch demonta ed ro us ne s by core tly id n ify ng a s m le on ami a ed wih *Bac u ub* Con e sely many n n-pe i c mpi i a io s we e pr s nt in mPCR as a s nd coud l ad to r ut ne m s den fctons F nal s qut pi g sh wed t e highe tr te of m s de tfctons p ss bly due o the x s en e of in a-pe i c va a io s in he p c ns rv d regin

### Conclusion

In his t dy we ave d mons r t d h t WGS was he most e ab e m t od among he 3 mol cu ar neumo oc al er typi g m th ds t s ed er ty e a i a ion w th Que ung is s il r qu r d as s me s rotyp s an ot e ce rly i t ng i hed us ng  $\phi$  equ nc s Se uen al mu ip ex PCR a d se uetyp ng h ve he ad an age o be ch ap r t an WGS a d co ld a so e ve s a gu de for Qu lung met od Non th l ss th se met ods ha e d awba ks m k ng hem l ss a t ac ve Con er ely s qu typi g or mu i l x PCR ap ro ch s may s pp ement d f cu t o o s rve Quel ng ea tons WGS coud e co s de ed as a p t nt to l or *S p en on ae* er typi g nd er a nly ery u e ul for ep d m o og c l p rpo e con i e ing s in r as d ac e s b l ty nd l wer os s

### References



# Acknowledgments

Th s work w s su potd by a gr nt rom Pf z r Can da We will ot ank re e M r in nd W l er D m zuk rom NML or s a ing *S p eum n ae* s r i s and who e g nome s qu nc s

Laboratoire de santé publique

du Québec





July 5, 2017

Dr. Brigitte Lefebvre Laboratoire de Santé Publique du Québec 20045 chemin Ste-Marie Sainte-Anne-de-Bellevue Quebec H9X 3R5 Re: Pfizer Reference **# WI197603** 

Dear Dr. Lefebvre:

I understand that you have completed the Pfizer-supported investigator-initiated research study with reference # WI197603 entitled: *Molecular tools for serotyping for Streptococcus pneumoniae invasive strains surveillance in the province of Quebec.* Now that the study is closed, please complete the enclosed *Certification of Study Closure* form and return it to my attention, either by fax; number **514-693-4715** or via email.

We look forward to working with you on future research projects. If you have any questions or comments, please do not hesitate to contact me at

Best regards,



IIR Grant Specialist Medical Quality & Effectiveness

Encl: certification of study closure form



### CERTIFICATION OF STUDY CLOSURE FORM

RVVESTIGATOR INFORMATION         FRINCIPAL INVESTIGATOR       Dr. Brigitte Lefebvre Laboratoire de Santé Publique du Québec 20045 chemin Ste-Marie 20045 chemin Ste				
PRINCIPAL INVESTIGATOR       Dr. Brigitte Lefebvre Laboratoire de Santé Publique du Québec 20045 chemin Ste-Marie Sante-Anne-de-Bellevue Quebec H3X 3R5         PRIZER REFERENCE NUMBER       W1197603       EXTERNAL REFERENCE NUMBER         STUDY TITLE       W1197603       EXTERNAL REFERENCE NUMBER         STUDY TITLE       Molecular tools for serotyping for Streptococcus pneumoniae invasive strains surveillance in the province of Quebec.         CERTIFICATION AND SIGNATURE       Icentify that the study identified above was conducted, any and all safety reporting obligations were met, and         I funding under the Pfizer grant has been paid; and • the Pfizer grant funds were used solely to conduct or report the study and not for any other purpose         Pfizer Product or Compound (please check if received)       N/A         PFIZER AUTHORIZES YOU TO DESTROY ANY UNISED SUPPLIES OF PFIZER-PROVIDED PRODUCT OR COMPOUND.       Iconfirm that all supplies of Pfizer product/compound were used in the conduct of the study and that no Pfizer product/compound remained at closure.         OR       I confirm that the unused supplies of Pfizer product/compound were destroyed in accordance with all applicable regulations, governmental guidelines, and institutional policies.         Capital Equipment (please check if received)       N/A         I confirm that the unused supplies of Pfizer equipment to a non-profit organization other than institution has donated the Pfizer equipment to a non-profit organization other than institution itself or any Institution affiliate.         I confirm that the explital equipment liste	INVESTIGA	TOR INFOR	PMATION	
STUDY TITLE       Modecular tools for serveryping for Streptococcus priedmoniae invasive strains surveillance in the province of Quebec.         CERTIFICATION AND SIGNATURE       Icertify that the study identified above was conducted, any and all safety reporting obligations were met, and         Image: Strains (please check if received)       N/A         Image: all funding under the Pfizer grant has been paid; and       ithe Pfizer grant funds were used solely to conduct or report the study and not for any other purpose         Pfizer Product or Compound (please check if received)       N/A         PFIZER AUTHORIZES YOU TO DESTROY ANY UNUSED SUPPLIES OF PFIZER-PROVIDED PRODUCT OR COMPOUND.       Iconfirm that all supplies of Pfizer product/compound were used in the conduct of the study and that no Pfizer product/compound remained at closure.         OR       Iconfirm that the unused supplies of Pfizer product/compound were destroyed in accordance with all applicable regulations, governmental guidelines, and institutional policies.         Image: Capital Equipment (please check if received)       N/A         Image: Capital Equipment (please check if neceived)       N/A <th>PRINCIPAI INVESTIGA INSTITUTIO AND ADDR PFIZER RE NUMBER</th> <th>TOR ON NAME ESS FERENCE</th> <th>Dr. Brigitte Lefebvre Laboratoire de Santé Pub 20045 chemin Ste-Marie Sainte-Anne-de-Bellevue Quebec H9X 3R5 WI197603</th> <th>external reference</th>	PRINCIPAI INVESTIGA INSTITUTIO AND ADDR PFIZER RE NUMBER	TOR ON NAME ESS FERENCE	Dr. Brigitte Lefebvre Laboratoire de Santé Pub 20045 chemin Ste-Marie Sainte-Anne-de-Bellevue Quebec H9X 3R5 WI197603	external reference
CERTIFICATION AND SIGNATURE         I certify that the study identified above was conducted, any and all safety reporting obligations were met, and         Image: Second Secon	STUDY TIT	LE	strains surveillance in the	province of Quebec.
I certify that the study identified above was conducted, any and all safety reporting obligations were met, and   I Funding (please check if received) N/A   • all funding under the Pfizer grant has been paid; and • the Pfizer grant funds were used solely to conduct or report the study and not for any other purpose   Pfizer Product or Compound (please check if received) N/A   PFIZER AUTHORIZES YOU TO DESTROY ANY UNUSED SUPPLIES OF PFIZER-PROVIDED PRODUCT OR COMPOUND.     confirm that all supplies of Pfizer product/compound were used in the conduct of the study and that no Pfizer product/compound remained at closure.   OR     confirm that the unused supplies of Pfizer product/compound were destroyed in accordance with all applicable regulations, governmental guidelines, and institutional policies.   Capital Equipment (please check if received) N/A   I confirm that the capital equipment listed in the IIR agreement has been used only for purposes of the study.     confirm that the capital equipment listed in the Pfizer equipment to a non-profit organization other than institution itself or any Institution affiliate.   Y Future Publications   A sread and acknowledged in the IIR agreement, I confirm I am required to provide Pfizer an opportunity (45 to 60 days before submission or other public disclosure) to prospectively review any proposed publication, abstract, or other type of disclosure that reports the results of the study. Principal investigator will consider any such comments in good faith but is inder no obligation to incorporate any Pfizer suggestions.	CERTIFICA	TION AND S	SIGNATURE	
<ul> <li>Funding (please check if received) □ N/A         <ul> <li>all funding under the Pfizer grant has been paid; and</li> <li>the Pfizer grant funds were used solely to conduct or report the study and not for any other purpose</li> </ul> </li> <li>Pfizer Product or Compound (please check if received) ☑ N/A         <ul> <li>Pfizer AUTHORIZES YOU TO DESTROY ANY UNUSED SUPPLIES OF PFIZER-PROVIDED PRODUCT OR COMPOUND.</li> <li>I confirm that all supplies of Pfizer product/compound were used in the conduct of the study and that no Pfizer product/compound remained at closure.</li> </ul> </li> <li>OR         <ul> <li>I confirm that the unused supplies of Pfizer product/compound were destroyed in accordance with all applicable regulations, governmental guidelines, and institutional policies.</li> <li>Capital Equipment (please check if received) ☑ N/A             <ul> <li>I confirm that the capital equipment listed in the IIR agreement has been used only for purposes of the study.</li> <li>I confirm that the institution has donated the Pfizer equipment to a non-profit organization other than institution itself or any Institution affiliate.</li> </ul> </li> <li>Future Publications         <ul> <li>As read and acknowledged in the IIR agreement, I confirm I am required to provide Pfizer an opportunity (45 to 60 days before submission or other public disclosure) to prospectively review any proposed publication, abstract, or other type of disclosure that reports the results of the study. Principal investigator will consider any such comments in good faith but is under no obligation to incorporate any Pfizer suggestions.</li> </ul> </li> <li>Brigitte Lefebvre         <ul> <li>2017-07-21</li> <li>Date</li> </ul> </li> </ul></li></ul>	I certi	fy that the st	udy identified above was conduct	ed, any and all safety reporting obligations were met, and
<ul> <li>all funding under the Pfizer grant has been paid; and</li> <li>the Pfizer grant funds were used solely to conduct or report the study and not for any other purpose</li> <li>Pfizer Product or Compound (please check if received) N/A</li> <li>PFIZER AUTHORIZES YOU TO DESTROY ANY UNUSED SUPPLIES OF PFIZER-PROVIDED PRODUCT OR COMPOUND.</li> <li>I confirm that all supplies of Pfizer product/compound were used in the conduct of the study and that no Pfizer product/compound remained at closure.</li> <li>OR</li> <li>I confirm that the unused supplies of Pfizer product/compound were destroyed in accordance with all applicable regulations, governmental guidelines, and institutional policies.</li> <li>Capital Equipment (please check if received) N/A</li> <li>I confirm that the capital equipment listed in the IIR agreement has been used only for purposes of the study.</li> <li>I confirm that the institution has donated the Pfizer equipment to a non-profit organization other than institution itself or any Institution affiliate.</li> <li>Future Publications</li> <li>As read and acknowledged in the IIR agreement, I confirm I am required to provide Pfizer an opportunity (45 to 60 days before submission or other public disclosure) to prospectively review any proposed publication, abstract, or other type of disclosure that reports the results of the study. Principal investigator will consider any such comments in good faith but is under no obligation to incorporate any Pfizer suggestions.</li> </ul>	Funding	(please chec	k if received) 🗌 N/A	
Pfizer Product or Compound (please check if received)       ☑ N/A         PFIZER AUTHORIZES YOU TO DESTROY ANY UNUSED SUPPLIES OF PFIZER-PROVIDED PRODUCT OR COMPOUND.       □         □ I confirm that all supplies of Pfizer product/compound were used in the conduct of the study and that no Pfizer product/compound remained at closure.       OR         □ I confirm that the unused supplies of Pfizer product/compound were destroyed in accordance with all applicable regulations, governmental guidelines, and institutional policies.       OR         □ I confirm that the capital equipment (please check if received)       ☑ N/A         □ I confirm that the capital equipment listed in the IIR agreement has been used only for purposes of the study.       □         □ confirm that the institution has donated the Pfizer equipment to a non-profit organization other than institution itself or any Institution affiliate.       ☑         ☑ Future Publications       ☑         ☑ As read and acknowledged in the IIR agreement, I confirm I am required to provide Pfizer an opportunity (45 to 60 days before submission or other public disclosure) to prospectively review any proposed publication, abstract, or other type of disclosure that reports the results of the study. Principal investigator will consider any such comments in good faith but is under no obligation to incorporate any Pfizer suggestions.         Brigitte Lefebvre       2017-07-21         □ Date       □	<ul><li>all f</li><li>the</li></ul>	funding under Pfizer grant fi	the Pfizer grant has been paid; and ands were used solely to conduct or a	l report the study and not for any other purpose
PFIZER AUTHORIZES YOU TO DESTROY ANY UNUSED SUPPLIES OF PFIZER-PROVIDED PRODUCT OR COMPOUND.         I confirm that all supplies of Pfizer product/compound were used in the conduct of the study and that no Pfizer product/compound remained at closure.         OR         I confirm that the unused supplies of Pfizer product/compound were destroyed in accordance with all applicable regulations, governmental guidelines, and institutional policies.         Capital Equipment (please check if received)       N/A         I confirm that the capital equipment listed in the IIR agreement has been used only for purposes of the study.         I confirm that the institution has donated the Pfizer equipment to a non-profit organization other than institution itself or any Institution affiliate.         Future Publications         As read and acknowledged in the IIR agreement, I confirm I am required to provide Pfizer an opportunity (45 to 60 days before submission or other public disclosure) to prospectively review any proposed publication, abstract, or other type of disclosure that reports the results of the study. Principal investigator will consider any such comments in good faith but is under no obligation to incorporate any Pfizer suggestions.         Brigitte Lefebvre       2017-07-21         Date       Date	Pfizer P	roduct or Co	mpound (please check if received	) 🛛 N/A
□       I confirm that all supplies of Pfizer product/compound were used in the conduct of the study and that no Pfizer product/compound remained at closure.         OR       □         □       I confirm that the unused supplies of Pfizer product/compound were destroyed in accordance with all applicable regulations, governmental guidelines, and institutional policies.         □       Capital Equipment (please check if received)       ☑ N/A         □       I confirm that the capital equipment listed in the IIR agreement has been used only for purposes of the study.         □       I confirm that the institution has donated the Pfizer equipment to a non-profit organization other than institution itself or any Institution affiliate.         ☑       Future Publications         ☑       As read and acknowledged in the IIR agreement, I confirm I am required to provide Pfizer an opportunity (45 to 60 days before submission or other public disclosure) to prospectively review any proposed publication, abstract, or other type of disclosure that reports the results of the study. Principal investigator will consider any such comments in good faith but is under no obligation to incorporate any Pfizer suggestions.         Brigitte Lefebvre       2017-07-21         □       Date	PFIZER	AUTHORIZ	XES YOU TO DESTROY ANY UN	USED SUPPLIES OF PFIZER-PROVIDED PRODUCT OR
OR         I confirm that the unused supplies of Pfizer product/compound were destroyed in accordance with all applicable regulations, governmental guidelines, and institutional policies.         Capital Equipment (please check if received)       N/A         I confirm that the capital equipment listed in the IIR agreement has been used only for purposes of the study.         I confirm that the institution has donated the Pfizer equipment to a non-profit organization other than institution itself or any Institution affiliate.         Future Publications         As read and acknowledged in the IIR agreement, I confirm I am required to provide Pfizer an opportunity (45 to 60 days before submission or other public disclosure) to prospectively review any proposed publication, abstract, or other type of disclosure that reports the results of the study. Principal investigator will consider any such comments in good faith but is under no obligation to incorporate any Pfizer suggestions.         Brigitte Lefebvre       2017-07-21         Date       Date	I co proc	nfirm that all duct/compour	supplies of Pfizer product/compour ad remained at closure.	nd were used in the conduct of the study and that no Pfizer
□ I confirm that the unused supplies of Pfizer product/compound were destroyed in accordance with all applicable regulations, governmental guidelines, and institutional policies.         □ Capital Equipment (please check if received) ☑ N/A         □ I confirm that the capital equipment listed in the IIR agreement has been used only for purposes of the study.         □ I confirm that the institution has donated the Pfizer equipment to a non-profit organization other than institution itself or any Institution affiliate.         ☑ Future Publications         ☑ As read and acknowledged in the IIR agreement, I confirm I am required to provide Pfizer an opportunity (45 to 60 days before submission or other public disclosure) to prospectively review any proposed publication, abstract, or other type of disclosure that reports the results of the study. Principal investigator will consider any such comments in good faith but is under no obligation to incorporate any Pfizer suggestions.         Brigitte Lefebvre       2017-07-21         □ Date       Date	OR			
Capital Equipment (please check if received)       N/A         I confirm that the capital equipment listed in the IIR agreement has been used only for purposes of the study.         I confirm that the institution has donated the Pfizer equipment to a non-profit organization other than institution itself or any Institution affiliate.         Future Publications         As read and acknowledged in the IIR agreement, I confirm I am required to provide Pfizer an opportunity (45 to 60 days before submission or other public disclosure) to prospectively review any proposed publication, abstract, or other type of disclosure that reports the results of the study. Principal investigator will consider any such comments in good faith but is under no obligation to incorporate any Pfizer suggestions.         Brigitte Lefebvre       2017-07-21         Date       Date	I con regu	nfirm that the ilations, gove	unused supplies of Pfizer product/ornmental guidelines, and institution	compound were destroyed in accordance with all applicable nal policies.
<ul> <li>I confirm that the capital equipment listed in the IIR agreement has been used only for purposes of the study.</li> <li>I confirm that the institution has donated the Pfizer equipment to a non-profit organization other than institution itself or any Institution affiliate.</li> <li>Future Publications</li> <li>As read and acknowledged in the IIR agreement, I confirm I am required to provide Pfizer an opportunity (45 to 60 days before submission or other public disclosure) to prospectively review any proposed publication, abstract, or other type of disclosure that reports the results of the study. Principal investigator will consider any such comments in good faith but is under no obligation to incorporate any Pfizer suggestions.</li> </ul>	Capital I	Equipment (j	please check if received) 🛛 N	/A
<ul> <li>Future Publications</li> <li>As read and acknowledged in the IIR agreement, I confirm I am required to provide Pfizer an opportunity (45 to 60 days before submission or other public disclosure) to prospectively review any proposed publication, abstract, or other type of disclosure that reports the results of the study. Principal investigator will consider any such comments in good faith but is under no obligation to incorporate any Pfizer suggestions.</li> <li>Brigitte Lefebvre</li> </ul>	I confirm I confirm Institutio	that the capir that the insti on affiliate.	tal equipment listed in the IIR agree tution has donated the Pfizer equip	ement has been used only for purposes of the study. ment to a non-profit organization other than institution itself or any
<ul> <li>As read and acknowledged in the IIR agreement, I confirm I am required to provide Pfizer an opportunity (45 to 60 days before submission or other public disclosure) to prospectively review any proposed publication, abstract, or other type of disclosure that reports the results of the study. Principal investigator will consider any such comments in good faith but is under no obligation to incorporate any Pfizer suggestions.</li> <li>Brigitte Lefebvre</li> <li>Date</li> </ul>	Future P	ublications		
Brigitte Lefebvre     2017-07-21       Date     Date	As read a before su disclosur under no	and acknowled abmission or of that reports obligation to	dged in the IIR agreement, I confirm other public disclosure) to prospecti the results of the study. Principal i incorporate any Pfizer suggestions.	n I am required to provide Pfizer an opportunity (45 to 60 days ively review any proposed publication, abstract, or other type of investigator will consider any such comments in good faith but is .
Determined of the second	Brigitte Lefel	bvre		2017-07-21
	D · · / /		• • •	Date

Please fax this form to Pina Mustillo at 514-693-4715 or by email pina.mustillo@pfizer.com.

### STUDY STATUS UPDATE FORM: CLINICAL

IIR Grant Specialist IIR Grant Specialist EMAIL

Pfizer

IIR Grant Specialist PHONE IIR Grant Specialist FAX



### PLEASE COMPLETE AND RETURN BY: June 21, 2017

Per contractual requirements, we are requesting a status update on your IIR study supported by Pfizer via funding and/or drug. Please answer the following questions regarding the above referenced study by the due date. Answers from your last submitted update have been incorporated below; please update as needed and answer the remaining questions.

GENERAL INFORMATION					
Pfizer Tracking #	WI203144	Institutional Protocol #	2014 192, CE 13.212, 3SP		
Principal Investigator	Dr. Brigitte Lefebvre				
Study Title	Serotype monitoring of S. pneumoniae invasive strains in adult population in the province of Quebec_ a 3 years study evaluation.				
STUDY UPDATE INFORMA	TION				
Has this study been initiated?		Date of in	mm/dd/yyyy itiation 01/01/2016		
Has the protocol been amended	since last update?	NO YES (If YES, please prov	vide the revised protocol)		
Current IRB/IEC approval/renew November 5, 2017	the most recent letter				
Have there been any personnel of	changes? (If YES, please provide r	name and full contact info on Page 3)	NO TYES		
Target protocol enrollment	550 strains	Date of first subject enrolled	mm/dd/yyyy 01/01/2016		
Last reported enrollment	189 strains	Actual enrollment to date (this should not include screen failures)	633 strains		
Targeted last subject last visit		Actual last subject last visit			
Do you have current drug suppl on Page 3)	Section NO YES Not applicable				
Is this protocol closed to enrollment? (patients may still be receiving therapy)					
mm/dd/yyyyTargeted study completion date (primary objectives met; patient therapy and final study analysis complete)12/31/2018					
Actual study completion date (ij	12/31/2018				
Targeted date to provide results	30/06/2019				
PUBLICATION INFORMATION					
Do you plan to publish? (If YES, please complete the information below.)					
Please be aware that, according to the IIR agreement, the investigator is required to provide Pfizer with an opportunity to prospectively review any proposed publication, abstract or other type of disclosure that reports the results of the study.					
FORMAT	PUBLICATION	PLANNED A	ACTUAL SUBMISSION		

Pfizer		STUDY STATUS UPDA FORM: CLINICAL			
II IIR Grant	R Grant Specialist Specialist EMAIL	IIR Grant Specialist IIR Grant Specia	PHONE alist FAX		
	(please include anticipated	d journal or audience)	UT3R G	MPLETE AN	DATE
Abstract	International Symposium on Pneumoo 5-19 April, 2018, Melbourne, Australia	cocci and Pneumococcal Diseases a.		$\boxtimes$	
Manuscript	Vaccine/PlosOne		$\boxtimes$		
Poster	CACMID		$\boxtimes$		
Other					
SIGNATUR	E				
NAME	Brigitte Lefebvre				

Pfizer STUDY S FORM		STATUS UPD. M: CLINICAI	ATE 4	
IIR Grant Specialist IIR Grant Specialist EMAIL		IIR Grant Special IIR Grant Spec	st PHONE cialist FAX	
DRUG SUPPLY INFORMATION				
SUPPLY CURRENTLY ON SITE		F	CTIVE	PLACEBO
ESTIMATED REMAINDER REQUIRED TO CON	IPLETE STUDY	A	CTIVE	PLACEBO
CAN PHARMACY ACCOMODATE TOTAL REM	IAINDER?	YES		
PERSONNEL INFORMATION				
MAILING ADDRESS TELEPHONE FAX EMAIL				
PH/	ARMACIST	OTH	IER (specify i	in additional comments)
NAME				
NSTITUTION				
MAILING ADDRESS				
TELEPHONE				
AX				
EMAIL				

COMMENTS



1	Comparison of sequential multiplex PCR, sequetyping and whole genome
2	sequencing for serotyping of Streptococcus pneumoniae
3	
4	Florian Mauffrey ¹ , Éric Fournier ¹ , Walter Demcuzuk ² , Irene Martin ² , Michael Mulvey ² ,
5	Christine Martineau ¹ , Simon Lévesque ¹ , Sadjia Bekal ¹ , Marc-Christian Domingo ¹ ,
6	Florence Doualla-Bell ¹ , Jean Longtin ¹ and Brigitte Lefebvre ¹ *
7	
8	¹ Laboratoire de santé publique du Québec, Institut national de santé publique du Québec,
9	Sainte-Anne-de-Bellevue, Québec, Canada.
10	² National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg,
11	Manitoba, Canada.
12	
13	*Corresponding author
14	Tel: (514) 457-2070 extension 2334
15	E-mail: brigitte.lefebvre@inspq.qc.ca
16	
17	
18	
19	
20	
21	
22	
23	Manuscript for Plos One

### 24 Abstract

Streptococcus pneumoniae is one of the major causes of pneumonia, meningitis and other 25 pneumococcal infections in young children and elders. Determination of circulating S. 26 pneumoniae serotypes is an essential service by public health laboratories for the 27 monitoring of putative serotype replacement following the introduction of pneumococcal 28 conjugate vaccines (PCVs) and of the efficacy of the immunization program. The 29 Quellung method remains the gold standard for typing S. pneumoniae. Although this 30 method is very effective, it is also costly, time consuming and not totally reliable due to 31 32 its subjective nature. The objectives of this study were to test and evaluate the efficiency of 3 different molecular methods compared to the Quellung method. Sequential multiplex 33 PCR, sequetyping and whole genome sequencing (WGS) were chosen and tested using a 34 set of diverse S. pneumoniae. One-hundred and eighteen isolates covering 83 serotypes 35 were subjected to multiplex PCR and sequetyping while 88 isolates covering 53 serotypes 36 were subjected to WGS. Sequential multiplex PCR allowed the identification of a 37 significant proportion (49%) of serotypes at the serogroup or subset level but only 27% 38 were identified at the serotype level. Using WGS, 55% to 60% of isolates were identified 39 40 at the serotype level depending on the analysis strategy used. Finally, sequetyping was the method resulting in the most misidentified serotypes (17%). The use of Jin cpsB41 database instead of the GenBank database slightly improved results but did not 42 43 significantly impact the efficiency of sequetyping. Although none of these molecular methods may currently replace the Quellung method, WGS remains the most promising 44 45 molecular pneumococcal serotyping method.
## 46 Introduction

The Gram-positive lancet-shaped cocci bacteria *Streptococcus pneumoniae* is frequently 47 associated with meningitis, pneumonia and sepsis in humans in addition to be the major 48 cause of mortality in children (1). Pneumococcus infections mainly occur among young 49 children and the elderly, under 5 years old and above 65 years old, respectively (2). More 50 51 than 90 S. pneumoniae capsular polysaccharide (CPS) types exist resulting in a large variety of serotypes belonging to 46 different serogroups (3). In Canada, the introduction 52 of the seven-valent pneumococcal conjugate vaccine (PCV-7) in 2005 targeting the seven 53 predominant serotypes (4, 6B, 9V, 14, 18C, 19F, and 23F) led to a significant decrease in 54 invasive pneumococcal diseases (IPD) associated to these serotypes (4). However, 55 replacement of vaccine serotypes by non-vaccine serotypes (NVT) led to the emergence 56 57 of serotype 19A as the new predominant multi-drug resistant serotype (5). Following the advent of NVT, two others vaccines were released in 2008 and 2010, PCV-10 and PCV-58 13, respectively. The monitoring of IPD serotypes became essential as new NVT may 59 have emerged making the introduction of new vaccines necessary. 60

Serotyping methods of *S. pneumoniae* can be grouped in two different categories: phenotype-based methods and genotype-based methods (6). The Quellung method (based on antisera reactions) still remains the Gold Standard method used in most laboratories (7). However this method is expensive, laborious and not fully reliable. Following the sequencing of the *cps* loci of 90 pneumococcal serotypes, methods based on the detection of serotype-specific genes were developed in order to provide cost-effective and reliable assays for the serotyping of *S. pneumoniae* (6,8). 68 Among these methods, three were chosen for comparison in this study: sequential multiplex PCR, sequetyping and whole genome sequencing (WGS). The sequential 69 multiplex PCR protocol was developed by the Centers for Disease Control and 70 Prevention (CDC) and relies on the use of primers targeting serotype- or serogroup-71 specific regions (wzy or wzx) in the *cps* loci (9). PCR has been extensively used for the 72 73 serotyping of S. pneumoniae and had the advantage of being easy to use and can be performed on a large quantity of samples (10-13). The sequetyping method was 74 developed by Leung et al. (2012) and is based on the cpsB gene sequence which appears 75 76 to be specific to serotypes. WGS became a suitable method for serotyping with the improvement in accuracy and a decrease in cost which has allowed the identification of 77 serotype by comparing cps loci sequences (14–16). 78

The replacement of the Gold Standard Quellung method in routine laboratories by a genotype-based method is a current issue for many laboratories, requiring preliminary estimations of the efficiency and adaptability of different methods. Such comparisons and evaluations for some methods have already been conducted (17–21). Unfortunately, interstrain genome variations led to an increase in *cps* loci rearrangement and diversity. Thus the efficiency of molecular serotyping methods may vary between strains and/or between different regions (8,22).

In this study, a large number of serotypes were included, but a focus on the most
prevalent serotypes in Québec/Canada and serotypes targeted by PCV-13 were chosen.
The evaluation of a potential molecular replacement for the Quellung identification
method was considered.

#### 90 Material and methods

### 91 Isolates, culture conditions and DNA extraction

One hundred eighteen invasive S. pneumoniae representing 83 serotypes previously 92 identified by the Quellung reaction were selected from the Laboratoire de santé publique 93 du Québec (LSPQ) provincial surveillance program (see Table S1). All the isolates were 94 95 subjected to sequential multiplex PCR and sequetyping methods. Six serotype 35A isolates and six serotype 34 isolates were added to the pool tested with the sequential 96 multiplex method as well as six serotype 29 isolates were added to the sequetyping pool. 97 98 A subset of 53 isolates were tested with WGS and represented 32 different serotypes. The selection of the serotypes was performed on the basis of the most prevalent serotypes in 99 the province of Québec in 2012-2016 (Figure 1). Rare serotypes were also included in 100 101 order to test the robustness of the method. WGS data for 35 S. pneumoniae was also provided by the National Microbiology Laboratory (NML, Winnipeg, Canada), totaling 102 88 isolates representing 53 serotypes subjected to serotyping using WGS approach. 103 104 Finally, three *Streptococcus pseudopneumoniae* and three *Streptococcus mitis* were used as specificity controls for sequential multiplex PCR and sequetyping. 105

Isolates were cultured on TSA II (Trypticase Soy Agar with 5% sheep blood) agar plate and incubated overnight at 35°C in a 5% CO₂ atmosphere. Bacteria were collected with a loop and suspended in G2 buffer solution with RNase A (QIAGEN inc, Toronto, ON, Canada). Samples were then frozen at -20°C until extraction. DNA extraction was performed with the MagAttract DNA Mini M48 Kit (QIAGEN inc, Toronto, ON, Canada) and the QIAGENTM BioRobot M48 workstation according to manufacturer's instructions. 113

## 114 <u>Sequential multiplex PCR</u>

The CDC sequential multiplex PCR protocol was used as described by Carvalho et al. 115 116 (2010). Briefly, primers pairs were designed to target serotype- or serogroup-specific regions in the wzy or wzx genes. The choice of primers was modeled on those included in 117 118 the CDC protocol as they were adapted to the 22 most prevalent serotypes in Quebec (2012-2016). These serotypes represent 90 % of IPD in Quebec. All serotypes included in 119 the PCV-13 (4, 6B, 9V, 14, 18C, 19F, 23F, 1, 5, 7F, 3, 6A and 19A) were also covered by 120 121 this protocol. Positive and negative controls were used in each reaction. Positive controls consisted of a mix of S. pneumoniae DNA extract of serotypes present in each multiplex. 122 S. pseudopneumoniae and S. mitis DNA extracts were tested in each multiplex as a 123 124 control of specificity.

125

#### 126 <u>Sequetyping</u>

127 Sequetyping procedures were conducted as described by Leung et al. (2012) with some modifications. Briefly, master mix was composed of 0.3 µl of Amplitaq DNA polymerase 128 129 (5 U/µl), 38.85 µl of DNA-free water, 5 µl of 10x PCR buffer (ThermoFisher Scientific, Whitby, Canada), 1.5 µl of MgCl₂ (50 mM), 0.75 µl of dNTPs (10 mM), 0.8 µl of cps1 130 and cps2 primers (25 µM) and 2 µl of DNA extract for a final volume of 50 µl. Cycling 131 132 conditions was performed as described by Leung et al. (2012). Sequencing was performed using the BigDye® Terminator v3.1 Cycle Sequencing Kit (ThermoFisher 133 Scientific, Whitby, Canada) in a 3130xl Genetic Analyzer (ThermoFisher Scientific, 134 135 Whitby, Canada).

Assembled *cpsB* sequences were blasted against a local and comprehensive *cpsB* database developed by Jin *et al.* (2016). This database extended the previous database created by Leung *et al.* (2012) by covering 95 serotypes instead of 93 and including a total of 390 sequences. Then, *cpsB* sequences were used to interrogate the GenBank database (https://www.ncbi.nlm.nih.gov/genbank/). In-house Python scripts allowed the automation of these processes. Serotypes were attributed considering hits with the highest bit scores.

143

## 144 <u>Whole genome sequencing</u>

Libraries for whole genome sequencing were prepared with the Nextera XT DNA library 145 preparation kit and sequenced using an Illumina MiSeq reagent kit v3 (600 cycles, paired 146 ends) following the manufacturer's instructions. Reads quality was evaluated with 147 FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). De novo genome 148 assemblies were performed using SPAdes version 3.9.0 (23) assembler on Calcul Quebec 149 150 public resources (http://www.calculquebec.ca/en/) with standard parameters. Assemblies' quality was assessed with Quast (24). Concerning the identification of the different cps 151 152 loci, a local cps database was created with 107 cps sequences representing 92 different serotypes (3) retrieved from the NCBI GenBank database. Assembled contigs containing 153 cps sequences were blasted against this database using BLAST+ tools suite in an 154 155 automated in-house Python scripts. Hits with the highest identity value and High Scoring Pair (HSP) length were retained for serotype attribution. When multiple hits had high 156 157 identity value (<0.5% compared to best hit) for an equivalent HSP length, they were all 158 retained for serotype attribution.

PneumoCaT (Pneumococcus Capsular typing Tool), a serotyping designed workflow, was also used for serotype identification (25). Automation of PneumoCaT was performed using a shell command based script. Best hits were always considered for serotype attribution. When capsular typing variant analysis occurred (see Kapatai *et al.*, 2016), this result was retained for serotype attribution.

Isolates misidentified with the assembly-based strategy were subjected to further investigations. The *cps* locus was extracted from the corresponding contig according to the best hit coordinates and aligned with *cps* reference sequences of both best hit and expected serotype, for comparison. Alignments were done using the Artemis Comparison Tool (ACT) v6 and WebACT (26).

169

#### 170 <u>Serotype identification levels</u>

For all the methods tested in this study, sample identification was classified as follows: 1) 171 Serotype when the correct serotype was determined, 2) Serogroup when the correct 172 173 serotype was determined as well as other serotype(s) from the same serogroup, 3) Subset 174 when the correct serotype was determined as well as other serotype(s) from a different 175 serogroup, 4) Misidentified when an incorrect serotype was determined and 5) Not determined (N.D.) when no amplification occurred in PCR multiplex reactions or when 176 *cpsB* was not amplified in the sequetyping method. When isolates of the same serotypes 177 178 had different identification levels with the same method, they were classified as inconsistent results when results per serotype were considered. 179

180 **Results** 

## 181 <u>Sequential multiplex PCR</u>

Among all existing *S. pneumoniae* serotypes, the CDC sequential multiplex PCR protocol is able to detect 74 different serotypes. *cpsA* amplification ensures the presence of *S. pneumoniae* DNA in each reaction. In our experiments, *cpsA* amplification product was present in all reactions except for isolates of serotypes 25F and 38. The absence of amplification in those serotypes has been previously documented by Carvalho *et al.*, (2010). Moreover, no *cpsA* amplification occurred with *S. pseudopneumoniae* and *S. mitis* isolates.

189

190 In this study, 130 isolates were tested with multiplex PCR method, covering 83 serotypes. 191 Of the tested isolates, 45/130(35%) were identified at the serotype level, 42/130(32%)were identified at the serogroup level, 22/130 (17%) were identified at the subset level, 192 19/130 (15%) were not determined, and 2/130 (1%) were misidentified (Table 1A). All 193 serotypes were not equally represented in our isolates selection, thus these results are not 194 representative of the method efficiency concerning identification level. Nevertheless, all 195 196 results were consistent when multiple isolates were tested for a same serotype, except for serotype 35A (1% of serotypes). Considering identification for each serotype, 22/83 197 (27%) were identified at the serotype level, 24/83 (29%) were identified at the serogroup 198 199 level, 17/83 (20%) were identified at the subset level, 19/83 (23%) were not determined and 0/83 (0%) were misidentified (Table 1B). 200

201 Serotypes 34 and 35A showed unexpected results. Serotype 34 sample showed many 202 amplicons, including a non-specific amplicon (250 bp) and the expected amplicon (408

203 bp), in the same reaction (multiplex PCR 7). Six more serotype 34 isolates were selected 204 and subjected to identification with sequential multiplex PCR and the same non-specific amplification was present in 3 out of 6 reactions. The expected amplification product at 205 206 280 bp was not present in the multiplex PCR 7 with serotype 35A and 6 other serotype 35A isolates were further selected. For 5 out of 6 isolates, the expected amplicon was 207 208 detected but a non-specific amplicon at 250 bp was also visible. It should be noted that expected amplicons bands are very well defined and have high intensity compared to 209 non-specific amplicons bands which are generally less bright. 210

211 Non-specific amplification products were present in many PCR reactions. They seemed to occur randomly and did not depend on the isolate serotype. Only 4 different sizes non-212 specific amplicons were observed during this study, a non-specific bands at 500 bp in 213 214 multiplex PCR 2, a non-specific band at 677 bp in multiplex PCR 3, a non-specific band at 850 bp in multiplex PCR 6 and a non-specific band at 250 bp in multiplex PCR 7. 215 Except for the band at 677 bp in the multiplex PCR 3, these non-specific products did not 216 217 correspond to expected product sizes in their respective multiplex PCR and were easily identified as non-specific. However, the amplification product at 677 bp in multiplex 218 219 PCR 3 corresponds to the expected size for serotype 35B and is hardly identifiable as non-specific. Many non-specific amplicons were also present for S. pseudopneumoniae 220 221 and S. mitis in most of the multiplex PCR.

222

223 <u>Sequetyping</u>

Of the 124 *S. pneumoniae* isolates subjected to sequetyping, 118 (95%) were positive for *cpsB* amplification (1061 bp). No *cpsB* amplification was obtained for serotypes 25F, 37,

38, 39 and 43 which was in accordance with results from Leung *et al.* (2012) as these serotypes were predicted *in silico* to be non-amplifiable. However, no *cpsB* amplification was obtained with serotype 29 although it was expected to be amplifiable according to Leung *et al.* (2012). Therefore, 6 other serotype 29 isolates were selected and subjected to sequetyping. All 6 samples led to *cpsB* amplification. After sequencing and assembling, the average sequence length was 890 bp which is longer than the 732 bp region used by Leung *et al.*, (2012) to test all their serotypes.

One hundred eighteen sequences representing 78 serotypes were subjected to blast for 233 234 identification. Two different databases were chosen for the analysis: the exhaustive NCBI GenBank database and a more restrained but specific *cpsB* database created by Jin *et al.*, 235 (2016). Using the GenBank database, 61/124 (49%) were identified at the serotype level, 236 20/124 (16%) were identified at the serogroup level, 14/124 (11%) were identified at the 237 subset level and 23/124 (19 %) were misidentified. Using the Jin cpsB database, 65/124 238 (52%) were identified at the serotype level, 20/124 (16%) were identified at the 239 240 serogroup level, 12/124 (10%) were identified at the subset level and 21/124 (17%) were misidentified (Table 1A). Inconsistent results were obtained for some serotypes (6B, 6C, 241 242 19F and 23F) when using the GenBank database but not using the Jin *cpsB* database. Considering only serotypes, identification with the GenBank database resulted in 35/83 243 244 (42%) identifications at the serotype level, 12/83 (14.5%) identifications at the serogroup 245 level, 12/83 (14.5%) identifications at the subset level and 14/83 (17%) misidentified. With the Jin cpsB database, 38/83 (46%) were identified at the serotype level, 14/83 246 247 (17%) were identified at the serogroup level, 12/83 (14%) were identified at the subset

level and 13/83 (16%) were misidentified. Results were slightly better with the Jin *cpsB*database (Table 1B), in particular for inconsistent results.

The majority of misidentifications were due to the attribution of closely related serotypes 250 251 of the same genogroup (27). For example, one serotype 9A isolate was identified as 252 serotype 9V, one serotype 11F isolate was identified as serotype 11C and one serotype 42 253 isolate was identified as serotype 35B/35C see table S2 in supplemental material for a complete and detailed list). For some misidentifications, there was no association 254 between the determined serotype and the expected one. This was the case for one 255 256 serotype 15C isolate identified as serotype 24F, one serotype 19F isolate identified as serotype 10A and one serotype 17A isolate was identified as serotype 10A. Serotype 29 257 isolates were all misidentified as serotype 35B/35C. Although these serotypes are 258 genetically close, the percent similarity of our serotype 29 cpsB sequence compared with 259 the serotype 29 reference sequence was only 83%. 260

Only one *S. pseudopneumoniae* isolate led to the amplification of *cpsB*. This sequence was associated with serotype 20 with 96% similarity which was the lowest score across all isolates.

264

### 265 <u>Whole genome sequencing</u>

The number of paired-end reads obtained varied between 100 065 and 1 153 346 with an average of 542 388. Whereas some values appeared to be low, assembling metrics generated by Quast highlight a good sequencing quality in general (see table S3 in supplemental material). Assembling coverage varied from 14X to 296X with an average of 94X.

271 Serotype identification was mainly based on sequence identity level and HSP length (see 272 Table S4). For 53 of 88 isolates (60%), serotype was correctly determined without any ambiguity. The serogroup was determined for 25 of 88 isolates (28%), 6 of 88 (7%) were 273 274 determined at the subset level and 4 of 88 isolates (5%) were misidentified. Considering 275 serotypes, they were correctly determined for 29 of 53 serotypes (55%), serogroup was 276 correctly determined for 13 of 53 serotypes (25%), 6 of 53 (11%) were determined at the subset level and 3 of 51 (6%) were misidentified. Inconsistent results were obtained for 277 278 isolates of serotype 6B and 7F, representing 3% of the serotypes tested.

For some isolates, Blast results could not discriminate between two different serotypes
because of their high degree of genetic similarities or due to the existence of DNA
polymorphism among single serotypes (28). This was the case for 15B/15C, 22A/22F,
7A/7F, 11A/11D, 25A/25F, 32A/32F, 33A/33F, 9A/9V, 12A/46, 12F/44, 18B/18C and
35A/35C/42.

The *cps* locus sequence of misidentified isolates (serotypes 6D, 7F and 29) were aligned with the corresponding best hit reference sequence given by the in-house serotyping method and with the expected serotype sequence (Figures 2A to 2C). No significant hit with 18B reference sequence was found for the misidentified serotype 18B isolate. Therefore, the *cps* locus was aligned with the best hit reference sequence (Figure 2D).

The *cps* locus alignment of our serotype 29 isolate resulted in fragmented hits with low identity compared with the serotype 29 reference sequence. The region 1174-2915 bp of our serotype 29 isolate sequence did not match with both serotype 29 and serotype 35B reference sequences and coded for a *tnp* transposase. It appeared that the *cps* locus of the serotype 29 isolate was located at the end of the corresponding contig and may be

incomplete, resulting in a 1303 bp shorter sequence compared to the serotype 29 reference sequence. A very poor alignment was also obtained for our serotype 7F isolate *cps* locus sequence compared with the serotype 7F reference sequence, with less than 50% of the *cps* locus sequence correctly aligned. For the serotype 6D isolate, the major difference between the 2 alignments was the absence of a match with the serotype 6D reference sequence in the 5170-6608 bp region coding for the glycosyl transferase *wciN*.

300 PneumoCaT was also used for serotype attribution using the same set of WGS data (reads data). The first hit was always considered for the prediction of the serotype. If a capsular 301 302 typing variant analysis occurred, the serotype resulting from this analysis was retained for 303 the serotype prediction. Sixty-one of 87 isolates (70%) were successively identified at the serotype level but all the others isolates (30%) were misidentified. Considering only 304 305 serotypes, 31 of 52 serotypes (60%) were identified at the serotype level and 19 of 52 (36%) were misidentified. Inconsistent results were obtained for 2 serotypes (7F and 306 307 11A), representing 4% of the serotypes tested.

309 **Discussion** 

*S. pneumoniae* serotyping has become critical since the release of the different PCV for the monitoring of putative emergent NVT. Unfortunately, the gold standard Quellung method is expensive and laborious and can lead to interpretation errors. The implementation of a new and reliable serotyping method is needed, especially for surveillance programs such as the provincial surveillance held at the Laboratoire de santé publique du Québec.

In this study, 3 different molecular based serotyping methods (sequential multiplex PCR, sequetyping and WGS) were compared in order to evaluate their efficiency in serotype attribution for *S. pneumoniae* invasive isolates. This is the first comparison between these 3 methods on a common set of isolates.

320

PCR methods are very powerful, reliable and easy to perform. Multiplex PCR is an even 321 more efficient technique since one single reaction allows the simultaneous detection of 322 323 more than one gene and/or allele. The CDC sequential multiplex PCR method gave the expected results, with 27%, 29% and 20% correct identifications of the serotype, 324 325 serogroup and subset, respectively. This was also the method presenting the least misidentified isolates (1%). However, serotypes among a serogroup are inevitably 326 revealed under the same signal in the current protocol due to their high level of genetic 327 328 homogeneity. For example, primer pair 6A/6B/6C/6D in reaction 1 is simultaneously specific to four different serotypes. This is the most important limit for the efficiency of 329 330 this method because no better results can be expected. Moreover, a significant number 331 (23%) of serotypes were not detectable by this method, representing another limitation

332 from a surveillance perspective. It also seems that small genetic variations in some isolates (serotype 35A) could determine the presence or absence of amplicon (29). It is 333 possible that the isolates tested were genetic variants of the CDC isolates of serotype 35A 334 and that the primers 35A/35C/42 were unable to match these isolates. This finding would 335 mean that the method efficiency could vary from one geographic region to another 336 337 depending on the genetic distance with the isolates used for primer design. Another important aspect is the specificity of the method for S. pneumoniae. Indeed, it is not 338 uncommon to confuse S. pneumoniae with other Streptococcus spp. due to their high 339 340 degree of similarity, especially S. pseudopneumoniae (30). Here, the internal control (cpsA) allowed differentiation between S. pneumoniae and S. pseudopneumoniae or S. 341 mitis. However, 2 serotypes (25F and 38) were also negative for cpsA amplification 342 making this discrimination not fully reliable. Finally, non-specific amplifications 343 occurred during CDC 344 the study, specified by the as (https://www.cdc.gov/streplab/pcr.html). Although most of the non-specific products did 345 346 not match with expected amplifications, some of them could lead to misidentification.

347

Sequetyping is not limited to the number of detectable serotypes as *cpsB* sequences of almost all serotypes are present in regularly updated public database. Nevertheless, *cpsB* is not amplifiable in all serotypes, making these serotypes not identifiable with this method. This was the case for serotypes 25F, 37, 38, 39 and 43 in our study. Sequences for serotypes 39 and 43 were predicted to be non-amplifiable by Leung *et al.* (2012) even though they were amplified in their study. However, they did not obtain any amplification for serotype 25F or 38, which is consistent with our results. Finally,

serotype 37 *cpsB* sequence was predicted to be amplifiable but was not tested *in vitro* in
their study.

We decided to use the local *cpsB* sequence database created by Jin *et al.* (2016) instead of 357 the database used by Leung et al. (2016) because this database was more comprehensive 358 359 and covered more serotypes. Overall, we obtained more identification at the serotype 360 level and less misidentifications using the local cpsB database as compared to the GenBank database. Significant differences were obtained for serotypes 6B, 6C, 19F and 361 23F where results between isolates of the same serotype were concordant with the cpsB362 363 database but not with GenBank database. Only well characterized sequences with fulllength *cpsB* were chosen for this database and can explain these results. Indeed, slight 364 365 variations in the cpsB sequence could have a major influence on serotype attribution when the GenBank database is used due to a lot of *cpsB* sequences presenting nucleotide 366 variations not representative of the serotype. In contrast, the use of a local cpsB database 367 368 with few but representative sequences avoided these mistakes. Apart from serotypes 12F, 369 17A, 18C, 24F, 29 and 35A, no equivalent data are available in Leung et al., (2012) for the other misidentified serotypes we observed in this study. For serotype, serogroup, and 370 371 subset levels identification, our results are generally the same as the ones obtained by Leung et al., (2012). However, Comparisons are not always possible since 38 of our 372 serotypes are missing in the Leung et al., (2012) study. Most of misidentified serotypes 373 374 had some nucleotides of difference (from 1 to 59) with the best hit sequence, usually of the same serogroup or genogroup (27). This is caused by intra-serotype variation (28) in 375 376 the *cps* regulatory region and can lead to identification in the wrong serogroup. This issue 377 has already been observed by Leung et al., (2012) with one 19F isolate identified as a 378 serotype 1. Furthermore, some serotypes may have identical *cpsB* sequences as it is the case with some 6A and 6B isolates (31). Moreover, for our serotypes 17A and 29 isolates, 379 no significant hits were obtained with serotype 17A and 29 *cpsB* sequences, respectively. 380 S. pneumoniae genome diversity may be high between geographically distant locations, 381 382 leading to divergence between serotype 17A and 29 cpsB sequences present in the 383 databases and sequences obtained in this study. However, this appears to be very unlikely (32). Our evaluation of the sequetyping approach has demonstrated that this serotyping 384 method is not always able to correctly identify serotype probably due to short DNA sub 385 386 region of a large locus used in this analysis. Of the 6 other non-S. pneumoniae isolates tested, only one S. pseudopneumoniae led to a cpsB amplicon. This was not expected as it 387 has been reported that S. pseudopneumoniae cps locus is not complete compared to S. 388 pneumoniae and does not contain cpsB (33). However, the low identity of the best HSP 389 (96%) could help to discriminate this isolate. A recent method based on sequetyping 390 391 including a second analysis step for homologous strains allowed to obtain more accurate 392 results for these strains (34). Such protocol could putatively help to obtain better results and make sequetyping more attractive. 393

394

Two different approaches were used for serotype identification using WGS method. Our in-house workflow consisted in assembling contigs from sequencing data and to Blast them with a *cps* loci sequence database. Eighty-two percent of serotypes were identified at the serotype or serogroup level, demonstrating the efficiency of this strategy. Regarding unresolved serotypes (7A/7F, 9A/9V, 11A/11D, 12A/12F/44/46, 18B/18C, 22A/22F, 25A/25F, 32A/32F, 33A/33F and 35A/35C/42), these were all identified as

401 another serotype belonging to the same genogroup as defined by Kapatai et al., 2016. 402 More sensitive genetic analysis methods would be required to make a more accurate identification such as the capsular variant analysis integrated in PneumoCaT (see below). 403 404 Interestingly, serotype 22F isolates matched serotypes 22F/22A but with two separate 405 HSPs. This unexpected Blast result is caused by the high divergence of two genes (wcwA 406 and wcwC) in the cps locus of those isolates compared to their orthologous sequences in serotype 22F. Similar finding were reported for isolate 1772-40b (GenBank accession 407 HE651318; Salter et al., 2012), a 22F serotype which matches perfectly with our 22F 408 409 isolates.

A serotype 29 isolate was misidentified with WGS and identified as serotype 35B. 410 Serotype 35B and 29 are known to be genetically related, leading to cross-reactivity in 411 antisera reactions (35). However, no significant hit with serotype 29 was found in Blast 412 results, meaning that no relevant alignment could be made. These results were in 413 414 agreement with sequetyping results obtained for serotype 29 isolates. Alignment with serotype 29 reference sequence (isolate 34373, Bentley et al., 2006) showed low identity 415 although the serotype was confirmed by Quellung. Transposase coding region (*tnp*) was 416 417 found downstream the *dexB* gene in the serotype 29 isolate. According to Bratcher *et al.*, 418 2011, those regions may contribute to the vertical exchange of the cps locus between pneumococcal isolates and hence to their molecular evolution and adaptation, which 419 420 could explain the low identity with serotype 29 reference sequence. Serotypes 6D and 6B belong to the same genogroup. However, the glycosyl-transferase wciN is present in the 421 422 6B cps locus and not in the 6D cps locus, distinguishing those (36). This gene was 423 present in the studied serotype 6D isolate, which explains the misidentification with

424 serotype 6B. It has been suggested that serotype 6D could have emerged from 425 recombination between serotypes 6B and 6C but Song *et al.* (2011) highlighted the 426 implausibility of this event because of a high genetic distance between these serotypes. 427 Therefore, this gene acquisition was probably due to homologous recombination events 428 or horizontal genetic transfers. The misidentification of serotype 7F isolate with serotype 429 14 and serotype 18B with 7B were surprising as these 2 serotypes belong to different 430 genetic clusters (Kapatai *et al.*, 2016).

PneumoCaT is the second approach we used for WGS serotyping and totally integrates a 431 432 capsular variant analysis step in its workflow. Single Nucleotide Polymorphisms (SNPs) analysis, allelic variations or presence/absence of genes are analyzed when more than one 433 locus is matched or if the match corresponds to a defined genogroup (25). Although the 434 first step gave results similar to the results obtained with the assembly-based approach, 435 the variant-based step missed the correct serotype for half of the serotypes tested. 436 However, PneumoCaT attributed the correct serotype for 8 serotypes (7A, 9V, 12A, 12F, 437 15C, 22A, 22F and 33F) which were only identified at the serogroup level or subset with 438 the assembly-based approach. 439

The aim of this study was to evaluate 3 DNA-based *S. pneumoniae* serotyping methods which could eventually replace the current Quellung gold standard method. Above all, none of the methods tested showed enough efficiency to be able to completely replace the Quellung method in surveillance programs. Indeed, identifications at the serogroup level were obtained with all of them but more particularly with sequential multiplex PCR. Though WGS produces reliable serotyping results, currently this method is still costly and time consuming. Nevertheless, with the automation of bioinformatic pipelines and 447 the constant drop of reagent costs, this method could become very attractive for monitoring invasive S. pneumoniae serotypes. Moreover, WGS allows the analysis of 448 molecular evolution of the isolates, the identification of putative vaccine targets in 449 450 addition to the study of antibiotic resistance and virulence genes. The sequential multiplex PCR and sequetyping strategy unlike WGS have specifically been developed to 451 452 improve the serotyping response time and to reduce the associated costs. PCR has the inconvenience of requiring an adaptation to the local epidemiology of circulating 453 serotypes. Simply changing the sequential order of the reaction may be sufficient but 454 455 more often reviewing the combination of primers in the reaction mixture is needed.

456 In this study, we have demonstrated that WGS was the most reliable method among the 3 methods tested for serotyping of S. pneumoniae. However, serotype validation with 457 Quellung is still required as some serotypes cannot be clearly distinguished with the *cps* 458 sequences. Sequential multiplex PCR and sequetyping have the advantage to be cheaper 459 460 than WGS and could also serve as a guide for Quellung method. But these methods have drawbacks making them less attractive. It is important to note that rare untypeable 461 isolates, due to their lack of capsular polysaccharide, may generate a positive result with 462 463 DNA based method (37). In such cases, the final serotype identification would be in disagreement with the Quellung reaction which would produce a negative result. 464 Conversely, the sequetyping or multiplex PCR approach may be used when the capsular 465 466 swelling of the Quellung reaction is difficult to observe through microscopic examination. Finally, a total replacement of the Quellung reaction by a molecular method 467 468 seems not possible yet. Nevertheless, WGS appears to be a very promising tool and could 469 replace the Quellung method in the near future with its extensive use and the470 development of databases.

## 471 Acknowledgements

- 472 We want to thank all the clinical laboratories of the province of Quebec for their
- 473 participation in the *S. pneumoniae* surveillance program. We also thank the LSPQ and
- 474 NML personnel for their precious technical assistance.
- 475

# 476 **Disclaimer**

477 This study was partially funded by Pfizer Canada (grant IIR number WI197603)

## 478 **References**

- 1. Feikin DR, Schuchat A, Kolczak M, Barrett NL, Harrison LH, Lefkowitz L, et al. 479 480 Mortality from invasive pneumococcal pneumonia in the era of antibiotic resistance, 1995-1997. Am J Public Health. 2000 Feb;90(2):223-9. 481 2. Black RE, Cousens S, Johnson HL, Lawn JE, Rudan I, Bassani DG, et al. Global, 482 regional, and national causes of child mortality in 2008: a systematic analysis. The 483 Lancet. 2010 Jun;375(9730):1969-87. 484 Camargo DRA, Pais FS, Volpini ÂC, Oliveira MAA, Coimbra RS. Revisiting 485 3. molecular serotyping of Streptococcus pneumoniae. BMC Genomics. 2015;16 486 487 (Suppl 5):S1. Deng X, Church D, Vanderkooi OG, Low DE, Pillai DR. Streptococcus pneumoniae 488 4. infection: a Canadian perspective. Expert Rev Anti Infect Ther. 2013 489 490 Aug;11(8):781–91. 491 5. Munoz-Almagro C, Jordan I, Gene A, Latorre C, Garcia-Garcia JJ, Pallares R. 492 Emergence of Invasive Pneumococcal Disease Caused by Nonvaccine Serotypes in the Era of 7-Valent Conjugate Vaccine. Clin Infect Dis. 2008 Jan 15;46(2):174-82. 493 494 Jauneikaite E, Tocheva AS, Jefferies JMC, Gladstone RA, Faust SN, 6. Christodoulides M, et al. Current methods for capsular typing of Streptococcus 495 496 pneumoniae. J Microbiol Methods. 2015 Jun;113:41-9. 497 7. Sørensen UB. Typing of pneumococci by using 12 pooled antisera. J Clin Microbiol. 1993 Aug;31(8):2097-100. 498 Bentley SD, Aanensen DM, Mavroidi A, Saunders D, Rabbinowitsch E, Collins M, 499 8. 500 et al. Genetic Analysis of the Capsular Biosynthetic Locus from All 90 501 Pneumococcal Serotypes. PLoS Genet. 2006 Mar;2(3). 9. Carvalho M da G, Pimenta FC, Jackson D, Roundtree A, Ahmad Y, Millar EV, et 502 al. Revisiting Pneumococcal Carriage by Use of Broth Enrichment and PCR 503 504 Techniques for Enhanced Detection of Carriage and Serotypes. J Clin Microbiol. 2010 May 1;48(5):1611-8. 505 10. Shakrin NNSM, Balasubramaniam SD, Yusof HA, Mastuki MF, Masri SN, Taib 506 NM, et al. Evaluation of PCR-based approach for serotype determination of 507 508 Streptococcus pneumoniae. Trop Biomed. 2013 Jun;30(2):338-44. 11. Siira L, Kaijalainen T, Lambertsen L, Nahm MH, Toropainen M, Virolainen A. 509 510 From Quellung to multiplex PCR, and back when needed, in pneumococcal
- 511 serotyping. J Clin Microbiol. 2012 Aug;50(8):2727–31.

- 512 12. Slinger R, Hyde L, Moldovan I, Chan F, Pernica JM. Direct *Streptococcus*513 *pneumoniae* real-time PCR serotyping from pediatric parapneumonic effusions.
  514 BMC Pediatr. 2014 Jul 24;14:189.
- Yu J, Lin J, Kim K-H, Benjamin WH, Nahm MH. Development of an automated
  and multiplexed serotyping assay for *Streptococcus pneumoniae*. Clin Vaccine
  Immunol CVI. 2011 Nov;18(11):1900–7.
- 518 14. Everett DB, Cornick J, Denis B, Chewapreecha C, Croucher N, Harris S, et al.
  519 Genetic Characterisation of Malawian Pneumococci Prior to the Roll-Out of the
  520 PCV13 Vaccine Using a High-Throughput Whole Genome Sequencing Approach.
  521 PLoS ONE. 2012 Sep 10;7(9).
- 522 15. Gladstone RA, Jefferies JM, Tocheva AS, Beard KR, Garley D, Chong WW, et al.
  523 Five winters of pneumococcal serotype replacement in UK carriage following PCV
  524 introduction. Vaccine. 2015;33(17).
- Metcalf BJ, Gertz Jr. RE, Gladstone RA, Walker H, Sherwood LK, Jackson D, et al.
  Strain features and distributions in pneumococci from children with invasive disease
  before and after 13-valent conjugate vaccine implementation in the USA. Clin
  Microbiol Infect. 2016 Jan;22(1):60.e9-60.e29.
- Al-Sheikh YA, Gowda LK, Marie MAM, John J, Dabwan KHM, Cs P. Distribution
  of Serotypes and Antibiotic Susceptibility Patterns Among Invasive Pneumococcal
  Diseases in Saudi Arabia. Ann Lab Med. 2014;34(3):210.
- 532 18. Dube FS, van Mens SP, Robberts L, Wolter N, Nicol P, Mafofo J, et al. Comparison
  533 of a Real-Time Multiplex PCR and Sequetyping Assay for Pneumococcal
  534 Serotyping. PloS One. 2015;10(9):e0137349.
- 19. Ogami M, Hotomi M, Togawa A, Yamanaka N. A comparison of conventional and molecular microbiology in detecting differences in pneumococcal colonization in healthy children and children with upper respiratory illness. Eur J Pediatr. 2010
  Oct;169(10):1221–5.
- Richter SS, Heilmann KP, Dohrn CL, Riahi F, Diekema DJ, Doern GV. Evaluation
  of Pneumococcal Serotyping by Multiplex PCR and Quellung Reactions. J Clin
  Microbiol. 2013 Dec 1;51(12):4193–5.
- 542 21. Shaaly A. Comparison of serotyping, pulsed field gel electrophoresis and amplified
  543 fragment length polymorphism for typing of *Streptococcus pneumoniae*. J Med
  544 Microbiol. 2005 May 1;54(5):467–72.
- Wen Z, Liu Y, Qu F, Zhang J-R. Allelic Variation of the Capsule Promoter
  Diversifies Encapsulation and Virulence In *Streptococcus pneumoniae*. Sci Rep.
  2016 Jul 28;6:30176.

548 549 550	23.	Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J Comput Biol. 2012 May;19(5):455–77.
551 552	24.	Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013 Apr 15;29(8):1072–5.
553 554 555 556	25.	Kapatai G, Sheppard CL, Al-Shahib A, Litt DJ, Underwood AP, Harrison TG, et al. Whole genome sequencing of <i>Streptococcus pneumoniae</i> : development, evaluation and verification of targets for serogroup and serotype prediction using an automated pipeline. PeerJ. 2016;4:e2477.
557 558	26.	Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG, Parkhill J. ACT: the Artemis comparison tool. Bioinformatics. 2005 Aug 15;21(16):3422–3.
559 560 561	27.	Mavroidi A, Aanensen DM, Godoy D, Skovsted IC, Kaltoft MS, Reeves PR, et al. Genetic Relatedness of the <i>Streptococcus pneumoniae</i> Capsular Biosynthetic Loci. J Bacteriol. 2007 Nov 1;189(21):7841–55.
562 563	28.	Varvio S, Auranen K, Arjas E, Mäkelä PH. Evolution of the Capsular Regulatory Genes in <i>Streptococcus pneumoniae</i> . J Infect Dis. 2009 Oct;200(7):1144–51.
564 565 566	29.	Wu J-H, Hong P-Y, Liu W-T. Quantitative effects of position and type of single mismatch on single base primer extension. J Microbiol Methods. 2009 Jun;77(3):267–75.
567 568 569 570	30.	Arbique JC, Poyart C, Trieu-Cuot P, Quesne G, Carvalho M d. GS, Steigerwalt AG, et al. Accuracy of Phenotypic and Genotypic Testing for Identification of <i>Streptococcus pneumoniae</i> and Description of Streptococcus pseudopneumoniae sp. nov. J Clin Microbiol. 2004 Oct 1;42(10):4686–96.
571 572 573	31.	Elberse K, Witteveen S, van der Heide H, van de Pol I, Schot C, van der Ende A, et al. Sequence Diversity within the Capsular Genes of <i>Streptococcus pneumoniae</i> Serogroup 6 and 19. Lin B, editor. PLoS ONE. 2011 Sep 16;6(9):e25018.
574 575 576	32.	Hiller NL, Janto B, Hogg JS, Boissy R, Yu S, Powell E, et al. Comparative Genomic Analyses of Seventeen <i>Streptococcus pneumoniae</i> Strains: Insights into the Pneumococcal Supragenome. J Bacteriol. 2007 Nov 15;189(22):8186–95.
577 578 579	33.	Skov Sørensen UB, Yao K, Yang Y, Tettelin H, Kilian M. Capsular Polysaccharide Expression in Commensal <i>Streptococcus</i> Species: Genetic and Antigenic Similarities to <i>Streptococcus pneumoniae</i> . mBio. 2016 Dec 30;7(6):e01844-16.
580 581 582 583	34.	Nagaraj G, Ganaie F, Govindan V, Ravikumar KL. Development of PCRSeqTyping—a novel molecular assay for typing of Streptococcus pneumoniae. Pneumonia [Internet]. 2017 Dec [cited 2017 Jul 26];9(1). Available from: http://pneumonia.biomedcentral.com/articles/10.1186/s41479-017-0032-3

- 584 35. Bush CA, Cisar JO, Yang J. Structures of Capsular Polysaccharide Serotypes 35F 585 and 35C of Streptococcus pneumoniae Determined by Nuclear Magnetic Resonance and Their Relation to Other Cross-Reactive Serotypes. Schneewind O, editor. J 586 587 Bacteriol. 2015 Sep 1;197(17):2762-9. 588 36. Song J-H, Baek JY, Ko KS. Comparison of Capsular Genes of Streptococcus pneumoniae Serotype 6A, 6B, 6C, and 6D Isolates. J Clin Microbiol. 2011 May 589 1;49(5):1758-64. 590 591 37. Kaijalainen T, Rintamäki S, Herva E, Leinonen M. Evaluation of genetechnological and conventional methods in the identification of Streptococcus 592 pneumoniae. J Microbiol Methods. 2002 Sep;51(1):111-8. 593 38. Leung MH, Bryson K, Freystatter K, Pichon B, Edwards G, Charalambous BM, et 594 al. Sequetyping: Serotyping Streptococcus pneumoniae by a Single PCR 595 Sequencing Strategy. J Clin Microbiol. 2012 Jul 1;50(7):2419–27. 596 597 39. Bratcher PE, Park IH, Oliver MB, Hortal M, Camilli R, Hollingshead SK, et al. Evolution of the capsular gene locus of *Streptococcus pneumoniae* serogroup 6. 598 599 Microbiology. 2011 Jan 1;157(1):189-98. 600 40. Salter SJ, Hinds J, Gould KA, Lambertsen L, Hanage WP, Antonio M, et al.
- 40. Safter SJ, Hinds J, Gould KA, Lambertsen L, Hanage WP, Antonio M, et al.
   Variation at the capsule locus, *cps*, of mistyped and non-typable *Streptococcus pneumoniae* isolates. Microbiology. 2012 Jun 1;158(Pt_6):1560–9.

- **Table 1** Serotype identification results according to the 3 molecular methods tested and
- 605 considering (A) isolates or (B) serotypes.
- **Table S1** *S. pneumoniae* isolates and serotypes included in this study.
- **Table S2** Serotypes and identification level determined using the multiplex PCR and
- 608 sequetyping methods.
- 609 **Table S3** WGS and assembly quality metrics.
- 610 **Table S4** Serotypes and identification level determined with WGS methods. For
- 611 PneumoCaT, the serotype chosen after the capsule variant analysis step is represented in
- 612 bold.







Figure 2: Alignment of *cps* loci of serotype 29 isolate (A), serotype 7F isolate (B), serotype 6D isolate (C) and serotype 18B isolate (D) with reference *cps* sequence and best hit *cps* sequence according to WGS identification. Alignment was generated with Artemis Comparison Tool (http://www.sanger.ac.uk/science/tools/artemis-comparison-tool-act).

Α		Sequetyping		WGS	
	CDC sequential multiplex PCR (n = 130)	NCBI online database (n = 124)	Curated $cpsB$ database (n = 124)	Assembling strategy (n = 88)	PneumoCaT $(n = 87)^{(1)}$
Serotype	35%	49%	52%	60%	70%
Serogroup	32%	16%	16%	28%	0%
Subset	17%	11%	10%	7%	0%
Misidentified	1%	19%	17%	5%	30%
N.D.	15%	5%	5%	0%	0%

B

		Sequetyping		WGS	
	CDC sequential multiplex PCR (n = 83)	NCBI online database (n = 83)	Curated $cpsB$ database (n = 83)	Assembling strategy (n = 53)	PneumoCaT $(n = 52)^{(1)}$
Serotype	27%	42%	46%	55%	60%
Serogroup	29%	14,5%	17%	25%	0%
Subset	20%	14,5%	14%	11%	0%
Misidentified	0%	17%	16%	6%	36%
Inconsistent	1%	6%	1%	3%	4%
N.D.	23%	6%	6%	0%	0%

N.D. = not determinable (not detectable in CDC PCR protocol or *cpsB* not amplified).

⁽¹⁾ One sample analysis failed because of too low reads number

**Table 1** Serotype identification results according to the 3 molecular methods tested and considering (A) isolates or (B) serotypes.

		Tested serotyping methods				
Serotypes according to Quellung	Isolates ID	Sequential multiplex PCR	Sequetyping	WGS		
1	MA096520	$\checkmark$	$\checkmark$			
1	MA101323	$\checkmark$	$\checkmark$			
1	LSPQ3053	$\checkmark$	$\checkmark$			
2	LSPQ3054	$\checkmark$	$\checkmark$			
3	MA100130	$\checkmark$	$\checkmark$			
3	MA101386	$\checkmark$	$\checkmark$			
3	MA080904			$\checkmark$		
3	MA081716			$\checkmark$		
3	MA082307			$\checkmark$		
3	MA086676			$\checkmark$		
3	MA096946			$\checkmark$		
3	LSPQ3055	$\checkmark$	$\checkmark$			
3	SC0174			$\checkmark$		
3	SC0286			$\checkmark$		
4	MA100773	$\checkmark$	$\checkmark$			
4	MA101744	$\checkmark$	$\checkmark$			
4	MA079938			$\checkmark$		
4	LSPQ3124	$\checkmark$	$\checkmark$			
5	MA082483	$\checkmark$	$\checkmark$			
5	LSPQ3057	$\checkmark$	$\checkmark$			
6A	MA099472	$\checkmark$	$\checkmark$			
6A	MA101024	$\checkmark$	$\checkmark$			
6A	LSPQ3058	$\checkmark$	$\checkmark$			
6A	SC0022			$\checkmark$		
6B	MA098599	$\checkmark$	$\checkmark$			
6B	MA101145	$\checkmark$	$\checkmark$			
6B	LSPQ3770	$\checkmark$	$\checkmark$			
6B	SC0023			$\checkmark$		
6B	SC0169			$\checkmark$		
6C	MA099139	$\checkmark$	$\checkmark$			
6C	MA100925	$\checkmark$	$\checkmark$			
6C	LSPQ4242	$\checkmark$	$\checkmark$			
6C	SC0262			$\checkmark$		
6D	MA092686	$\checkmark$	$\checkmark$			
6D	SC0129			$\checkmark$		
7A	LSPQ4102	$\checkmark$	$\checkmark$			
7A	SC0025			$\checkmark$		
7B	LSPQ4103	$\checkmark$	$\checkmark$			
7C	LSPQ4231	$\checkmark$	$\checkmark$			
7F	MA093680	$\checkmark$	$\checkmark$			
7F	MA097140	$\checkmark$	$\checkmark$			
7F	MA099461	$\checkmark$	$\checkmark$			
7F	MA081946			$\checkmark$		
7F	SC0218			$\checkmark$		
8	LSPQ3596	$\checkmark$	$\checkmark$			
8	SC0028			$\checkmark$		
9A	MA080418	$\checkmark$	$\checkmark$			

Table S1 S. pneumoniae isolates and serotypes included in this study.

		Tested serotyping methods				
Serotypes according to Quellung	Isolates ID	Sequential multiplex PCR	Sequetyping	WGS		
9A	SC0029			$\checkmark$		
9L	LSPQ4271	$\checkmark$	$\checkmark$	$\checkmark$		
9L	SC0011			$\checkmark$		
9N	MA098250	$\checkmark$	$\checkmark$			
9N	MA100245	$\checkmark$	$\checkmark$			
9N	MA080879			$\checkmark$		
9N	MA081113			$\checkmark$		
9N	MA099463	$\checkmark$	$\checkmark$			
9N	SC0031			$\checkmark$		
9V	MA097827	$\checkmark$	$\checkmark$			
9V	MA098806	$\checkmark$	$\checkmark$			
9V	MA099234	$\checkmark$	$\checkmark$			
9V	SC0172			$\checkmark$		
10A	MA090174	$\checkmark$	$\checkmark$			
10A	MA095845			$\checkmark$		
10A	MA094933			$\checkmark$		
10A	MA094205			$\checkmark$		
10B	MA080812	$\checkmark$	$\checkmark$			
10E	MA075627	$\checkmark$	$\checkmark$			
101 11A	MA090298	$\checkmark$	$\checkmark$			
11A	MA091851			$\checkmark$		
11A	SC0035			$\checkmark$		
11B	MA096566	$\checkmark$	$\checkmark$			
110	LSPO4272	$\checkmark$	$\checkmark$	$\checkmark$		
11D	SC0271			$\checkmark$		
11E	MA073130	$\checkmark$	$\checkmark$			
12A	MA097699	$\checkmark$	$\checkmark$			
12A	SC0066			$\checkmark$		
12R	SC0268			$\checkmark$		
12B 12F	L SPO3064	$\checkmark$	$\checkmark$			
121 12F	SC0199			$\checkmark$		
121	L SPO3065	$\checkmark$	1			
13	MA096954	$\checkmark$	1			
14	MA098680	✓	✓			
14	I SPO3066	✓	✓			
14	LSI Q5000 MA 100658	✓	· •			
15 A	ΜΔ101766	· ✓	· ✓			
15A 15A	MA 080018	•	·	1		
15A 15A	MA000200	4	1	•		
15A 15A	MA006702	•	Ŧ	1		
15A 15A	MA005226			•		
1JA 15 A	MA004662			•		
13A 15 A	MA092077			•		
13A 15 A	MAU93977			•		
15A 15D	SC0042	./		v		
128	MA099177	v	v	1		
15B	MA096033			<b>v</b>		
15B	MA095997			✓		

Table S1 S. pneumoniae isolates and serotypes included in this study.

		Tested serotyping methods				
Serotypes according to Quellung	Isolates ID	Sequential multiplex PCR	Sequetyping	WGS		
15B	MA094560			$\checkmark$		
15B	SC0044			$\checkmark$		
15C	MA096496	$\checkmark$	$\checkmark$			
15C	SC0045			$\checkmark$		
15F	MA083248	$\checkmark$	$\checkmark$			
16F	MA065427	$\checkmark$	$\checkmark$			
16F	LSPQ4236	$\checkmark$	$\checkmark$			
16F	MA093020			$\checkmark$		
17A	LSPQ4273	$\checkmark$	$\checkmark$	$\checkmark$		
17F	MA098807	$\checkmark$	$\checkmark$			
18A	LSPQ4243	$\checkmark$	$\checkmark$			
18A	SC0009			$\checkmark$		
18B	MA066814	$\checkmark$	$\checkmark$			
18B	SC0049			$\checkmark$		
18C	MA093772	$\checkmark$	$\checkmark$			
18C	MA099660	$\checkmark$	$\checkmark$			
18C	MA095139	$\checkmark$	$\checkmark$			
18C	SC0050			$\checkmark$		
18F	LSPQ4274	$\checkmark$	$\checkmark$	$\checkmark$		
18F	SC0051			$\checkmark$		
19A	MA101978	$\checkmark$	$\checkmark$			
19A	MA083042	$\checkmark$				
19A	MA084138	$\checkmark$				
19A	MA083920			$\checkmark$		
19A	MA097921			$\checkmark$		
19A	MA098817			$\checkmark$		
19A	LSPQ3071	$\checkmark$	$\checkmark$			
19A	MA080288			$\checkmark$		
19A	MA080125			$\checkmark$		
19A	MA079789			$\checkmark$		
19A	MA083042		$\checkmark$			
19A	MA084138		$\checkmark$			
19A	SC0010			$\checkmark$		
19F	MA100764	$\checkmark$	$\checkmark$			
19F	MA101680	$\checkmark$	$\checkmark$			
19F	MA098992	$\checkmark$	$\checkmark$			
20	LSPO3072	$\checkmark$	$\checkmark$			
21	LSPO3160	$\checkmark$	$\checkmark$			
22A	MA095877	$\checkmark$	$\checkmark$			
22A	SC0059			$\checkmark$		
22F	MA100780	$\checkmark$	$\checkmark$			
22F	MA101987	$\checkmark$	$\checkmark$			
22F	MA080654			$\checkmark$		
22F	LSPO4162	$\checkmark$	$\checkmark$			
22F	MA096962			$\checkmark$		
22F	MA094696			$\checkmark$		
22F	MA00/680			$\checkmark$		

Table S1 S. pneumoniae isolates and serotypes included in this study.

		Tested serotyping methods				
Serotypes according to Quellung	Isolates ID	Sequential multiplex PCR	Sequetyping	WGS		
22F	SC0188			$\checkmark$		
22F	SC0291			$\checkmark$		
23A	MA082395			$\checkmark$		
23A	LSPQ3769	$\checkmark$	$\checkmark$			
23B	MA099469	$\checkmark$	$\checkmark$			
23F	MA100152	$\checkmark$	$\checkmark$			
23F	MA101159	$\checkmark$	$\checkmark$			
23F	MA099467	$\checkmark$	$\checkmark$			
24A	LSPQ4275	$\checkmark$	$\checkmark$	$\checkmark$		
24B	MA096695			$\checkmark$		
24B	MA094350	$\checkmark$	$\checkmark$			
24F	MA099028	$\checkmark$	$\checkmark$			
25F	LSPQ4276	$\checkmark$	$\checkmark$	$\checkmark$		
27	MA088547	$\checkmark$	$\checkmark$			
28A	MA099752	$\checkmark$	$\checkmark$			
28F	LSPQ4277	$\checkmark$	$\checkmark$	$\checkmark$		
29	LSPQ3079	$\checkmark$				
29	MA097586		$\checkmark$	$\checkmark$		
29	MA098344		$\checkmark$			
29	MA098505		$\checkmark$			
29	MA100224		$\checkmark$			
29	MA101320		$\checkmark$			
29	LSPQ3079		$\checkmark$			
29	MA099083		$\checkmark$			
31	LSPQ3080	$\checkmark$	$\checkmark$			
32A	LSPQ4278	$\checkmark$	$\checkmark$	$\checkmark$		
32F	LSPQ3081	$\checkmark$				
32F	LSPQ3081		$\checkmark$			
33A	MA086628	$\checkmark$	$\checkmark$			
33A	SC0082			$\checkmark$		
33B	LSPQ4279	$\checkmark$	$\checkmark$	$\checkmark$		
33F	MA080211			$\checkmark$		
33F	MA099238	$\checkmark$	$\checkmark$			
33F	SC0190			$\checkmark$		
34	MA101496	$\checkmark$				
34	MA101843	$\checkmark$				
34	MA102076	$\checkmark$				
34	MA102374	$\checkmark$				
34	MA102487	$\checkmark$				
34	LSPQ3127	$\checkmark$	$\checkmark$			
34	MA099037	$\checkmark$				
34	MA096961			$\checkmark$		
35A	LSPQ4266	$\checkmark$				
35A	LSPQ4267	$\checkmark$				
35A	LSPQ4268	$\checkmark$				
35A	LSPQ4269	$\checkmark$				
35A	LSPQ4270	$\checkmark$				

Table S1 S. pneumoniae isolates and serotypes included in this study.

		Tested serotyping methods			
Serotypes according to Quellung	Isolates ID	Sequential multiplex PCR	Sequetyping	WGS	
35A	MA101545			$\checkmark$	
35A	MA092229	$\checkmark$	$\checkmark$		
35A	MA082642	$\checkmark$			
35B	MA082394			$\checkmark$	
35B	MA097723	$\checkmark$	$\checkmark$		
35C	LSPQ4280	$\checkmark$	$\checkmark$	$\checkmark$	
35F	MA081892			$\checkmark$	
35F	MA099195	$\checkmark$	$\checkmark$		
36	LSPQ3641	$\checkmark$	$\checkmark$		
37	LSPQ3645	$\checkmark$	$\checkmark$		
37	SC0086			$\checkmark$	
38	LSPQ3642	$\checkmark$	$\checkmark$		
39	LSPQ3646	$\checkmark$	$\checkmark$		
40	LSPQ3162	$\checkmark$	$\checkmark$		
41A	LSPQ3089	$\checkmark$	$\checkmark$		
41F	LSPQ4281	$\checkmark$	$\checkmark$	$\checkmark$	
42	LSPQ3677	$\checkmark$	$\checkmark$		
43	LSPQ3643	$\checkmark$	$\checkmark$		
44	LSPQ3644	$\checkmark$	$\checkmark$		
44	SC0212			$\checkmark$	
45	LSPQ3092	$\checkmark$	$\checkmark$		
46	LSPQ3093	$\checkmark$	$\checkmark$		
46	SC0096			$\checkmark$	
47A	LSPQ4282	$\checkmark$	$\checkmark$	$\checkmark$	
47F	LSPQ4283	$\checkmark$	$\checkmark$	$\checkmark$	
48	LSPQ3095	$\checkmark$	$\checkmark$		
S. mitis $^{(1)}$	ID112476	$\checkmark$	$\checkmark$		
<i>S. mitis</i> ⁽¹⁾	MA084074	$\checkmark$	$\checkmark$		
<i>S. mitis</i> ⁽¹⁾	MA084310	$\checkmark$	$\checkmark$		
S. pseudopneumoniae ⁽¹⁾	ID111828	$\checkmark$	$\checkmark$		
S. pseudopneumoniae (1)	ID112065	$\checkmark$	$\checkmark$		
S. pseudopneumoniae ⁽¹⁾	ID112502	$\checkmark$	$\checkmark$		

Table S1 S. pneumoniae isolates and serotypes included in this study.

(1) Strains used as controls for specificity

Table S2 Serotypes and identification level determined using the multiplex PCR and sequetyping methods.

	CDC sequenti	al multiplex PCR	Sequetyp	ng (NCBI database)	Sequetyping (cpsB database)	
Serotype ⁽¹⁾	Serotype(s) determined	Identification level	Serotype(s) determined	Identification level (Online NCBI database)	Serotype(s) determined	Identification level (Local <i>cpsB</i> database)
1	1	Serotype	1	Serotype	1	Serotype
2	2	Serotype	2/41A	Ambiguous	2/41A	Ambiguous
3	3	Serotype	3	Serotype	3	Serotype
4	4	Serotype	4	Serotype	4	Serotype
5	5	Serotype	5	Serotype	5	Serotype
6A	6A/6B	Serogroup	6A	Serotype	6A	Serotype
6B	6A/6B	Serogroup	6B 6F/6B/6A	Serotype (n=1) Serogroup (n=2)	6B	Serotype
6C	6C/6D	Serogroup	6C 6C/6D	Serotype (n=1) Serogroup (n=2)	6C/6D	Serogroup
6D	6C/6D	Serogroup	6C/6D	Serogroup	6C/6D	Serogroup
7A	7A/7F	Serogroup	7A/7F	Serogroup	7A/7F	Serogroup
7B	7B/7C/40	Subset	40/7B	Ambiguous	40/7B	Ambiguous
7C	7B/7C/40	Subset	7C	Serotype	7C	Serotype
7F	7A/7F	Serogroup	7F/7A	Serogroup	7F/7A	Serogroup
8	8	Serotype	8	Serotype	8	Serotype
9A	9A/9V	Serogroup	9V	Misidentified	9V	Misidentified
9L	9N/9L	Serogroup	9L	Serotype	9L	Serotype
9N	9N/9L	Serogroup	9N	Serotype	9N	Serotype
9V	9A/9V	Serogroup	9V	Serotype	9V	Serotype
10A	10A	Serotype	10A	Serotype	10A	Serotype
10B	No amplification	ND	10B	Serotype	10B	Serotype
10F	10C/10F/33C	Subset	10F/10C	Serogroup	10F/10C	Serogroup
11A	11A/11D	Serogroup	11A/11D/18F	Ambiguous	11A/11D/18F	Ambiguous
11B	No amplification	ND	11B/11C	Serogroup	11B/11C	Serogroup
11C	No amplification	ND	11B/11C	Serogroup	11B/11C	Serogroup
11F	No amplification	ND	11C	Misidentified	11F/11C	Serogroup
12A	12A/12F/44/46	Subset	12F	Misidentified	12F	Misidentified
12F	12A/12F/44/46	Subset	12A	Misidentified	12A	Misidentified
13	13	Serotype	13/20	Ambiguous	13/20	Ambiguous
14	14	Serotype	14	Serotype	14	Serotype
15A	15A/15F	Serogroup	15A	Serotype	15A	Serotype
15B	15B/15C	Serogroup	15B	Serotype	15B	Serotype
15C	15B/15C	Serogroup	24F	Misidentified	24F	Misidentified
15F	15A/15F	Serogroup	15A	Misidentified	15A	Misidentified
16F	16F	Serotype	16F	Serotype	16F	Serotype
17A	No amplification	ND	10A	Misidentified	10A	Misidentified
17F	17F	Serotype	17F	Serotype	17F	Serotype
18A	18A/18B/18C/18F	Serogroup	18A	Serotype	18A	Serotype
18B	18A/18B/18C/18F	Serogroup	18B	Serotype	18B	Serotype
18C	18A/18B/18C/18F	Serogroup	18B	Misidentified	18B	Misidentified
18F	18A/18B/18C/18F	Serogroup	11A/11D/18F	Ambiguous	11A/11D/18F	Ambiguous
19A	19A	Serotype	19A	Serotype	19A	Serotype
19F	19F	Serotype	19F 10A	Serotype (n=2) Misidentified (n=1)	19F	Serotype
20	20	Serotype	20/13	Ambiguous	20/13	Ambiguous
	CDC sequenti	al multiplex PCR	Sequetypi	ng (NCBI database)	Sequetyping	(cpsB database)
Serotype	Serotype(s)	Identification level	Serotype(s)	Identification level (Online	Serotype(s)	Identification level (Local
	determined	Identification level	determined	NCBI database)	determined	cpsB database)
21	21	Serotype	21	Serotype	21	Serotype
22A	22A/22F	Serogroup	22F/22A	Serogroup	22F/22A	Serogroup
22F	22A/22F	Serogroup	22F/22A	Serogroup	22F/22A	Serogroup
23A	23A	Serotype	23A	Serotype	23A	Serotype
23B	23B	Serotype	23B	Serotype	23B	Serotype
23F	23F	Serotype	23F 14/12/21/23F	Serotype (n=1) Ambiguous (n=2)	23F	Serotype
24A	24A/24B/24F	Serogroup	24A	Serotype	24A	Serotype
24B	24A/24B/24F	Serogroup	24B	Serotype	24B	Serotype
24F	24A/24B/24F	Serogroup	24B	Misidentified	24B	Misidentified
25F	38/25A/25F	Subset		No cpsB a	amplification	
27	No amplification	ND	27	Serotype	27	Serotype
28A	No amplification	ND	28A	Serotype	28A	Serotype
28F	No amplification	ND	28F	Serotype	28F	Serotype

Table S2 Serotypes and identification level determined using the multiplex PCR and sequetyping methods.

	CDC sequent	itial multiplex PCR Sec		ing (NCBI database)	Sequetyping (cpsB database)	
Serotype ⁽¹⁾	Serotype(s) determined	Identification level	Serotype(s) determined	Identification level (Online NCBI database)	Serotype(s) determined	Identification level (Local <i>cpsB</i> database)
				No <i>cpsB</i> ampli	fication (n=1)	1
29	No amplification	ND	35C/35B	Misidentified (n=6)	35C/35B	Misidentified
31	31	Serotype	31	Serotype	31	Serotype
32A	No amplification	ND	32F/32A	Serogroup	32F/32A	Serogroup
32F	No amplification	ND	32F/32A	Serogroup	32F/32A	Serogroup
33A	33A/33F/37	Subset	33A/33F/35A	Ambiguous	33A/33F/35A	Ambiguous
33B	No amplification	ND	33B	Serotype	33B	Serotype
33F	33A/33F/37	Subset	33F/33A/35F	Ambiguous	33F/33A/35F	Ambiguous
34	34	Serotype	34/17A	Ambiguous	34/17A	Ambiguous
35A	No amplification 35A/35C/42	Misidentified $(n = 2)$ Subset $(n = 5)$	35C/35B	Misidentified	35C/35B	Misidentified
35B	35B	Serotype	35C/35B	Serogroup	35C/35B	Serogroup
35C	35A/35C/42	Subset	35C/35B	Serogroup	35C/35B	Serogroup
35F	35F/47F	Subset	35F/47F	Ambiguous	35F/47F	Ambiguous
36	No amplification	ND	36	Serotype	36	Serotype
37	33A/33F/37	Subset		No <i>cpsB</i> an	nplification	
38	38/25A/25F	Subset		No <i>cpsB</i> an	nplification	
39	39	Serotype		No <i>cpsB</i> an	nplification	
40	7B/7C/40	Subset	40/7B	Ambiguous	40/7B	Ambiguous
41A	No amplification	ND	41F	Misidentified	41F	Misidentified
41F	No amplification	ND	41F	Serotype	41F	Serotype
42	35A/35C/42	Subset	35C/35B	Misidentified	35C/35B	Misidentified
43	No amplification	ND		No <i>cpsB</i> an	nplification	
44	12A/12F/44/46	Subset	12B	Misidentified	12B	Misidentified
45	No amplification	ND	45	Serotype	45	Serotype
46	12A/12F/44/46	Subset	12A	Misidentified	12A	Misidentified
47A	No amplification	ND	47A	Serotype	47A	Serotype
47F	35F/47F	Subset	47F/35F	Ambiguous	47F/35F	Ambiguous
48	No amplification	ND	48	Serotype	48	Serotype

⁽¹⁾ Serotype determined with Quellung method
#### Table S3 WGS and assembly quality metrics.

Serotype	Reads numbers	Largest contig (bp)	N50	Mean coverage (X)
3	407 169	161 387	70 238	36
3	579 976	345 480	218 480	204
3	362 116	276 730	167 190	127
3	337 811	243 817	91 651	67
3	283 092	263 351	136 846	58
3	306 962	390 935	205 071	138
3	653 001	463 112	340 013	69
4	256 005	214 530	74 514	45
8	591 174	417 290	141 800	129
29	555 776	196 889	61 494	113
34	271 637	133 241	64 281	30
37	549 878	323 230	85 740	125
44	294 317	444 288	199 942	102
46	480 479	365 956	149 388	115
10A	1 150 155	330 614	115 223	92
10A	759 133	303 524	86 936	80
10A	878 063	303 918	98 395	90
11A	1 068 051	151 627	71 048	77
11A	569 660	333 166	125 531	122
11C	100 065	136 078	58 756	14
11D	610 239	344 620	132 147	136
12A	401 728	176 564	74 831	104
12B	632 729	59 472	10 314	68
12F	510 777	159 692	81 473	113
15A	268 153	247 306	95 807	45
15A	1 153 346	330 076	74 270	71
15A	406 573	176 268	54 348	56
15A	814 704	176 281	65 535	79
15A	735 845	241 467	88 561	73
15A	451 169	198 861	124 602	99
15B	979 655	151 822	80 855	83
15B	985 351	254 966	86 217	71
15B	739 530	169 702	84 611	66
15B	562 415	321 118	105 197	125
15C	522 019	388 494	128 627	120
16F	1 053 173	235 604	113 800	70
17A	155 277	305 746	98 305	17
18A	472 449	744 739	424 607	102
18B	381 836	216 017	82 749	67
18C	489 331	350 049	138 595	103
18F	229 176	197 877	109 713	22
18F	539 149	417 980	393 351	127
19A	729 967	328 634	86 181	131
19A	884 691	355 253	162 090	171
19A	365 612	381 909	163 676	89
19A	406 715	289 688	71 633	31
19A	1 023 720	340 957	71 895	90
19A	540 195	319 774	69 483	43

Table S3 WGS and assembly quality metrics.

Serotype	Reads numbers	Largest contig (bp)	N50	Mean coverage (X)
19A	424 005	300 204	132 496	101
22A	556 649	204 552	86 425	115
22F	404 211	297 023	104 357	92
22F	489 875	207 974	66 632	51
22F	788 724	243 814	86 596	70
22F	301 144	257 300	98 394	35
22F	416 774	276 645	60 906	175
22F	703 146	412 859	151 633	84
23A	429 205	273 953	113 480	93
24A	307 126	192 635	78 434	44
24B	500 784	220 680	88 008	57
25F	545 333	197 175	50 116	82
28F	611 811	239 939	90 168	76
32A	751 230	105 571	55 533	115
33A	514 867	387 226	216 927	109
33B	293 694	247 620	68 772	45
33F	475 948	246 678	140 406	83
33F	466 007	337 630	200 157	87
35A	515 979	286 061	162 953	296
35B	295 082	202 017	101 286	58
35C	285 007	230 492	75 491	35
35F	494 610	299 061	126 588	104
41F	253 861	158 243	72 183	52
47A	382 521	438 741	95 131	32
47F	695 607	171 602	71 324	103
6A	613 299	384 514	143 208	119
6B	632 742	561 617	145 339	137
6B	579 748	367 297	111 737	135
6C	684 939	323 480	144 636	159
6D	517 590	265 830	158 680	129
7A	633 052	143 961	76 126	250
7F	713 798	115 076	67 068	47
7F	553 480	317 583	105 433	133
9A	592 150	379 087	157 384	144
9L	117 140	161 368	49 807	14
9L	486 383	236 509	79 857	128
9N	438 695	345 799	136 064	85
9N	591 387	276 495	85 471	97
9N	634 222	362 428	157 652	141
9V	538 233	326 364	126 138	138
N.	540.000	200.401	115 505	<u></u>
Mean	542 388	280 491	115 625	94

**Table S4** Serotypes and identification level determined with WGS methods.For PneumoCaT, the serotype chosen after the capsule variant analysis step is represented in bold.

_	Assembly method		PneumoCaT		
Serotype	Best hits ⁽¹⁾	Identification level	Best hits ⁽¹⁾	Identification level	
3	3	Serotype	3	Serotype	
4	4	Serotype	4	Serotype	
6A	6A	Serotype	6A	Serotype	
CD	6A/6B	Serogroup (n=1)	6A- <b>6E</b>	Misidentified (n=1)	
OB	6B	Serotype (n=1)	6A	Misidentified (n=1)	
6C	6C	Serotype	6D	Misidentified	
6D	6B	Misidentified	6A- <b>6E</b>	Misidentified	
7A	7A/7F	Serogroup	<b>7A</b> -7F	Serotype	
76	14	Misidentified (n=1)	14	Serotype (n=1)	
/r	7A/7F	Serogroup (n=1)	7F	Misidentified (n=1)	
8	8	Serotype 8		Serotype	
9A	9A/9V	Serogroup	9A- <b>9V</b>	Misidentified	
9L	9L	Serotype	9L- <b>9N</b>	Misidentified	
9N	9N	Serotype	9L- <b>9N</b>	Serotype	
9V	9A/9V	Serogroup	9V	Serotype	
10A	10A	Serotype	<b>10A</b> -10B	Serotype	
11 Δ	110/110	Serogroup	11A- <b>11D</b>	Misidentified (n=1)	
IIA	IIA/IID		11A	Serotype (n=1)	
11C	11C	Serotype	<b>11C</b> -11C	Serotype	
11D	11D	Serotype	<b>11A</b> -11D	Misidentified	
12A	12A/46	Ambiguous	<b>12A</b> -46	Serotype	
12B	12B	Serotype	12A	Misidentified	
12F	12F/44	Ambiguous	12F	Serotype	
15A	15A	Serotype	15A	Serotype	
15B	15B/15C	Serogroup	15B- <b>15C</b>	Misidentified	
15C	15B/15C	Serogroup	15C	Serotype	
16F	16F	Serotype	16F	Serotype	
17A	17A	Serotype	17A	Serotype	
18A	18A	Serotype	18A	Serotype	
18B	7B	Misidentified	7B	Misidentified	
18C	18B/18C	Serogroup	18B	Misidentified	
18F	18F	Serotype	18F	Serotype	
19A	19A	Serotype	19A	Serotype	
22A	22F/22A	Serogroup	<b>22A</b> -22F	Serotype	
22F	22F/22A	Serogroup	22A- <b>22F</b>	Serotype	
23A	23A	Serotype	23A	Serotype	
24A	24A	Serotype	24A	Serotype	
24B	24B	Serotype	24B- <b>24F</b>	Misidentified	
25F	25A/25F	Serogroup	<b>25A</b> -25F	Misidentified	
28F	28F	Serotype	28F	Serotype	

 Table S4 Serotypes and identification level determined with WGS methods.

For PneumoCaT, the serotype chosen after the capsule variant analysis step is represented in bold.

	Assemb	ly method	PneumoCaT		
Serotype	Best hits ⁽¹⁾	Identification level	Best hits ⁽¹⁾	Identification level	
29	35B	Misidentified	35B	Misidentified	
32A	32A/32F	Serogroup	32A- <b>32F</b>	Misidentified	
33A	33A/33F	Serogroup	33A- <b>33F</b>	Misidentified	
33B	33B	Serotype	33B	Serotype	
33F	33A/33F	Serogroup	33F	Serotype	
34	34	Serotype	34	Serotype	
35A	35C/42/35A	Ambiguous	<b>35C</b> -42	Misidentified	
35B	35B	Serotype	35B	Serotype	
35C	35C/42	Ambiguous	35F	Misidentified	
35F	35F	Serotype	41F	Serotype	
37	37	Serotype	37	Serotype	
41F	41F	Serotype	41A- <b>41F</b>	Serotype	
44	12F/44	Ambiguous	12A	Misidentified	
46	12A/46	Ambiguous	12A	Misidentified	
47A	47A	Serotype		Failed ⁽²⁾	
47F	47F	Serotype	47F	Serotype	

(1) Best hit according to blast score and coverage

# SEROTYPE DISTRIBUTION OF INVASIVE STREPTOCOCCUS PNEUMONIAE STRAINS IN $\geq$ 5 YEARS OLD IN QUÉBEC, 2010-20 6

Ma kowski M Douvle- adet e ebv e B P De Wals G Deceunin k I Matn W Demczuk Doual a-Bell C T emblay J ongt n

In t tut na iona de anté pub ique du Québec abo a oi e de anté pub ique du Québec S in e-Anne de-B l evue C nada nst tut n ti nal de san é pub que du Québ c Di ec ion des sques b o ogiqu s t de a san é au t ava l Qu bec Can da Cent e de eche che du cent e hosp ta ie un ve s tai e de Qu bec Québec Canada Nat onal Mic obi logy a o a o y Pu I c H al h Ag ncy o Canada Winn peg Canada Min s è e de la san é et des se vic s soc aux du Québ c Canada

#### **Background and ob ect ves**

bo a o es we e in i ed o send a l The Queb c la o a o y u ei ance p og am o nva ive p eumococ al d s ase IPD) s un ve s l o at en s aged < 5 St a ns S p eumon ae st a ns om a no ma ly s e le s te to yea so d and a so nc udes a im ted ent ne ne wo k o pa ie ts  $\geq$  5 yea so ge his etwo k in lu es 21 abo ato es he SPQ At tal o 377 S pneumon ae nvas ve en om as ing pe iat c ho pi a s and ac ounts o abo t 35% o he i vas ve t ai s n pa ie t  $\geq$  5 yea s o a e n tans (1 tain patent 14 day) i ol ted n 20 4-Can date PC -13 vacue scue ty u ed in chld en nd sapp oved o hose  $\geq 5$  eas od wth sp cic 20 6 we e ana yzed Se o yp ng Se oty es we e ndia ions wie PPV 23 is e ommend dopten  $s \ge 65$  yea sod In ode oince seacu cy the suvela ce de e min d by Que lung ea t on us ng an ise a pog mws onve ed o a un ve sal pog am n 014 n hs tudy we e a uat d he b ne is o mon o ng all om S at ns e um ns i ut S neumon ae nvaie tanso hep vice in ptensaged  $\geq 5$  yeas om a ed osen i el ne wok monto ng

#### Me hods

### Results

ΝΝ

UN V R

TAB E 1 D st ib ti n o S pneumon ae se oty es in sen ine vs unive sa si es

So t pol	Ppoinygegoup(%)					
Se the	< 5	5 19	2 -49	5 -64	≥ 65	ΤΟ Α
PCV 7	18	<b>5</b> 9	98	90	<b>58</b>	6 7
PCV 10 *	00	17 6	17 4	10 8	36	76
PCV 13 **	12 4	<b>5</b> 9	21 2	<b>18 0</b>	21 2	18 6
PPV 23 †	55 8	26 5	32 6	<b>36 0</b>	37 6	84
NVT	30 1	44 1	18 9	<b>26 1</b>	<b>31 9</b>	87
TO A	100 0	00 0	100	100	100	100 0
Ppoinvgegup(%)						
Non se t nel	< 5	5 19	0-9	0-4	≥ 65	ΤΟΤΑ
PCV 7	12	69	70	52	29	41
PCV 10 *	12	17 2	14 1	99	35	69
PCV 13 **	17 9	27 6	21 6	25 4	20 9	22 2
PPV 23 †	<b>50 0</b>	20 7	38 8	37 3	36 4	37 4
NVT	<b>29 8</b>	27 6	18 5	22 2	<b>36 4</b>	29 4
ΤΟ Α	100 0	00 0	00 0	00 0	00 0	00 0
	PCV		PCV		ΡV	,
Ν	J N	UNVR		NN	U	N V R





#### Summary

In 2014 2016 he p opo ion o NVT was highe n ent nel t an n non sen inel i es o the 5 19 y lds 44 s 8%) whe eas it was 32% and 6% especiely in the  $\geq$  65 age g oup (able 1) A ece se n PCV 13 se ot pes was obse ved be w en 2010 and 2016 while NVT and add t onal PPV- 3 se ot pes nc eased e pec al y among 5-9 y pa ien s om ent nel s tes (ig 1) By 016 the 5 most equent se ot pes we e 22 (3%) 3 11%) 19A (9%) 9N (6%) and 15A (6%)  $n \ge 5 y$  om all ho pi als (ig 2) P opo tons o PCV 13 add tonal PPV-23 se otyp s nd NVT (non vac ine se oty e) we e 26% 36% 38% e pec ive y n the  $\geq$  5 y

## References

1 h tps /www nspq qc a/p bl c t ons 2254 2 h tp / pub i at ons ms s gouv qc a/ms s/ ch e / pi /p q_c m let d 3 h tp / www.pha -a pc gc c /pub ca /c d - m c/13 ol 9/a s dcc 5 as et /pd /1 vo 39 acs d c5- a d 4 Autian R 1 76 hequelug eaton an gecedmc ob olgice hni ue Mt Si ai J M d 3 99 709

# Conclusion

abo a o es o

w ll s the

The ove - ep ese tat on o pedit c pat ents with omo bid ty in the s nt nel ne wo k may be es onsi le o he ighe p opo ion o NVT obse ved n his goup o his ea on the e haus ive su velance o tho e < 5 y n eds o be con inued volu ion o ci c la ing se otyp s n at ents  $\geq 5$  y d d ot u ly co e ate w th the sen inel p og am A un ve sal su vei ance p ovid s be te ac u a y n an e a o inc eas d PCV 13 use in adu ts

# Acknowledgments

his wo k w s a i l y suppo	ed
y P ze	
A sp calt anks o alt e ln	cal

PQ nd NM

he povnce as

Institut national de santé publique * * Jébec 💀 🐼

> Laboratoire de santé publique du Québec